This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, whic...Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, which is the first case from Diaphanes, was identified and sequenced. The luciferase gene from D. pectinealis spans 1958 base pairs (bp) from the start to the stop codon, including seven exons separated by six introns, and encoding a 547-residuelong polypeptide. Its deduced amino acid sequence showed high protein similarity to those of the Lampyrini tribe (93 - 94% ) and the Cratomorphini tribe (92%), while low similarity was found with the North American firefly Photinus pyralis (83%) of the Photinini tribe within the same subfamily Lampyrinae. The phylogenetic analysis performed with the deduced amino acid sequences of the luciferase gene further confirms that D. pectinealis, Pyrocoelia, Lampyris, Cratomorphus, and Photinus belong to the same subfamily Lampyrinae, and Diaphanes is closely related to Pyrocoelia, Lampyris, and Cratomorphus. Furthemore, the phylogenetic analysis based on the nucleotide sequences of the luciferase gene indicates Diaphanes is a sister to Lampyris. The phylogenetic analyses are partly consistent with morphological (Branham & Wenzel, 2003) and mitochondrial DNA analyses (Li et al, 2006).展开更多
Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity pro...Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.展开更多
The cDNA encoding the luciferase from lantern mRNA of one diurnal firefly Pyrocoelia pygidialis Pic, 1926 has been cloned, sequenced and functionally expressed. The cDNA sequence of P pygidialis luciferase is 1647 bas...The cDNA encoding the luciferase from lantern mRNA of one diurnal firefly Pyrocoelia pygidialis Pic, 1926 has been cloned, sequenced and functionally expressed. The cDNA sequence of P pygidialis luciferase is 1647 base pairs in length, coding a protein of 548 amino acid residues. Sequence analysis of the deduced amino acid sequence showed that this luciferase had 97.8% resemblance to luciferases from the fireflies Lampyris noctiluca, Lampyris turkestanicus and Nyctophila cf. caucasica. Phylogenetic analysis using deduced amino acid sequence showed that P pygidialis located at the base of Lampyris+Nyctophila clade with robust support (BP=97%); but did not show a monophyletic relationship with its congeneric species P pectoralis, P tufa and P miyako, all three are strong luminous and nocturnal species. The expression worked in recombinant Escherichia coli. Expression product had a 70kDa band and emitted yellow-green luminescence in the presence of luciferin. Five loops in the P pygidialis luciferase, L1 (NI98-G208), L2 (T240-G247), L3 (G317-K322), L4 (L343-I350) and L5 (G522-D532), were found from the structure modeling analysis in the cleft, where it was considered the active site for the substrate compound entering and binding. Different amino acid residues between the luciferases of P. pygidialis and the three other known strong luminous species can not explain the situation of weak or strong luminescence. Future study of these loops, residues or crystal structure analysis may be helpful in understanding the real differences between the luciferases between diurnal and nocturnal species.展开更多
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis...Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.展开更多
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo...Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.展开更多
Wireless Sensor Networks(WSNs)comprises low power devices that are randomly distributed in a geographically isolated region.The energy consumption of nodes is an essential factor to be considered.Therefore,an improved...Wireless Sensor Networks(WSNs)comprises low power devices that are randomly distributed in a geographically isolated region.The energy consumption of nodes is an essential factor to be considered.Therefore,an improved energy management technique is designed in this investigation to reduce its consumption and to enhance the network’s lifetime.This can be attained by balancing energy clusters using a meta-heuristic Firefly algorithm model for network communication.This improved technique is based on the cluster head selection technique with measurement of the tour length of fireflies.Time Division Multiple Access(TDMA)scheduler is also improved with the characteristics/behavior of fireflies and also executed.At last,the development approach shows the progression of the network lifetime,the total number of selected Cluster Heads(CH),the energy consumed by nodes,and the number of packets transmitted.This approach is compared with Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR)and Low Energy Adaptive Clustering Hierarchy(LEAH)protocols.Simulation is performed in MATLAB with the numerical outcomes showing the efficiency of the proposed approach.The energy consumption of sensor nodes is reduced by about 50%and increases the lifetime of nodes by 78%more than AODV,DSR and LEACH protocols.The parameters such as cluster formation,end to end delay,percentage of nodes alive and packet delivery ratio,are also evaluated...The anticipated method shows better trade-off in contrast to existing techniques.展开更多
Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system ...Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller.展开更多
This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning...This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
Software development effort estimation is considered a fundamental task for software development life cycle as well as for managing project cost, time and quality. Therefore, accurate estimation is a substantial facto...Software development effort estimation is considered a fundamental task for software development life cycle as well as for managing project cost, time and quality. Therefore, accurate estimation is a substantial factor in projects success and reducing the risks. In recent years, software effort estimation has received a considerable amount of attention from researchers?and became a challenge for software industry. In the last two decades, many researchers and practitioners proposed statistical and machine learning-based models for software effort estimation. In this work, Firefly Algorithm is proposed as a metaheuristic optimization method for optimizing the parameters of three COCOMO-based models. These models include the basic COCOMO model and other two models proposed in the literature as extensions of the basic COCOMO model. The developed estimation models are evaluated using different evaluation metrics. Experimental results show high accuracy and significant error minimization of Firefly Algorithm over other metaheuristic optimization algorithms including Genetic Algorithms and Particle Swarm Optimization.展开更多
A simple and rapid expression and purification method of recombinant firefly luciferase was developed for bacteria detection. A modified luciferase gene from North American firefly Photinus pyralis was cloned into pET...A simple and rapid expression and purification method of recombinant firefly luciferase was developed for bacteria detection. A modified luciferase gene from North American firefly Photinus pyralis was cloned into pET28a expression vector and the recombinant protein was produced in Escherichia coli BL21. The recombinant luciferase,equipped with a polyhistidine affinity tag,was purified by immobilized metal ion affinity chromatography (IMAC). The approach generated an abundant expression and an efficient purification of a recombinant luciferase with final yield 1.995mg/L of cell culture. Experiments on the recombinant luciferase also showed that the relative light units (RUL) of the enzyme were 5.8×108,and the specific activity was 2.9×1010 RLU/mg. By applying adenosine triphosphate (ATP) bioluminescence to detection of the coin bacteria using the recombinant protein,the ATP content of bacteria was 9.48×10-16mol/mL,and was identical to the bacteria counts (4500CFU/mL) in order of magnitude. Taken together,our results provided a simple and efficacious method of the preparation of recombinant luciferase,which could be applied in the determination of bacteria via ATP bioluminescence.展开更多
This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits ...This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.展开更多
One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size.These heat sinks utilize plate or pin fins depending upon the required...One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size.These heat sinks utilize plate or pin fins depending upon the required heat dissipation rate.They are designed to optimize overall performance.Elliptical pin fin heat sinks enhance heat transfer rates and reduce the pumping power.In this study,the Firefly Algorithm is implemented to optimize heat sinks with elliptical pin-fins.The pin-fins are arranged in an inline fashion.The nature-inspired metaheuristic algorithm performs powerfully and efficiently in solving numerical global optimization problems.Based on mass,energy,and entropy balance,three models are developed for thermal resistance,hydraulic resistance,and entropy generation rate in the heat sink.The major axis is used as the characteristic length,and the maximum velocity is used as the reference velocity.The entropy generation rate comprises the combined effect of thermal resistance and pressure drop.The total EGR is minimized by utilizing the firefly algorithm.The optimization model utilizes analytical/empirical correlations for the heat transfer coefficients and friction factors.It is shown that both thermal resistance and pressure drop can be simultaneously optimized using this algorithm.It is demonstrated that the performance of FFA is much better than PPA.展开更多
Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)...Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.展开更多
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria...Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.展开更多
Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa l...Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.展开更多
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘Diaphanes is the fourth largest genus in Lampyridae, but no luciferase gene from this genus has been reported. In this paper, by PCR amplification of the genomic DNA, the luciferase gene of Diaphanes pectinealis, which is the first case from Diaphanes, was identified and sequenced. The luciferase gene from D. pectinealis spans 1958 base pairs (bp) from the start to the stop codon, including seven exons separated by six introns, and encoding a 547-residuelong polypeptide. Its deduced amino acid sequence showed high protein similarity to those of the Lampyrini tribe (93 - 94% ) and the Cratomorphini tribe (92%), while low similarity was found with the North American firefly Photinus pyralis (83%) of the Photinini tribe within the same subfamily Lampyrinae. The phylogenetic analysis performed with the deduced amino acid sequences of the luciferase gene further confirms that D. pectinealis, Pyrocoelia, Lampyris, Cratomorphus, and Photinus belong to the same subfamily Lampyrinae, and Diaphanes is closely related to Pyrocoelia, Lampyris, and Cratomorphus. Furthemore, the phylogenetic analysis based on the nucleotide sequences of the luciferase gene indicates Diaphanes is a sister to Lampyris. The phylogenetic analyses are partly consistent with morphological (Branham & Wenzel, 2003) and mitochondrial DNA analyses (Li et al, 2006).
基金supported by the National Basic Research Program of China(No.2013CB228602)the National Science and Technology Major Project of China(No.2011ZX05004-003)the National High Technology Research Program of China(No.2013AA064202)
文摘Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.
基金the Natural Foundation of Sciences of Yunnan Province (2006C0046Q)Partly by the Chinese Academy of Sciences (O706551141)
文摘The cDNA encoding the luciferase from lantern mRNA of one diurnal firefly Pyrocoelia pygidialis Pic, 1926 has been cloned, sequenced and functionally expressed. The cDNA sequence of P pygidialis luciferase is 1647 base pairs in length, coding a protein of 548 amino acid residues. Sequence analysis of the deduced amino acid sequence showed that this luciferase had 97.8% resemblance to luciferases from the fireflies Lampyris noctiluca, Lampyris turkestanicus and Nyctophila cf. caucasica. Phylogenetic analysis using deduced amino acid sequence showed that P pygidialis located at the base of Lampyris+Nyctophila clade with robust support (BP=97%); but did not show a monophyletic relationship with its congeneric species P pectoralis, P tufa and P miyako, all three are strong luminous and nocturnal species. The expression worked in recombinant Escherichia coli. Expression product had a 70kDa band and emitted yellow-green luminescence in the presence of luciferin. Five loops in the P pygidialis luciferase, L1 (NI98-G208), L2 (T240-G247), L3 (G317-K322), L4 (L343-I350) and L5 (G522-D532), were found from the structure modeling analysis in the cleft, where it was considered the active site for the substrate compound entering and binding. Different amino acid residues between the luciferases of P. pygidialis and the three other known strong luminous species can not explain the situation of weak or strong luminescence. Future study of these loops, residues or crystal structure analysis may be helpful in understanding the real differences between the luciferases between diurnal and nocturnal species.
文摘Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.
文摘Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.
文摘Wireless Sensor Networks(WSNs)comprises low power devices that are randomly distributed in a geographically isolated region.The energy consumption of nodes is an essential factor to be considered.Therefore,an improved energy management technique is designed in this investigation to reduce its consumption and to enhance the network’s lifetime.This can be attained by balancing energy clusters using a meta-heuristic Firefly algorithm model for network communication.This improved technique is based on the cluster head selection technique with measurement of the tour length of fireflies.Time Division Multiple Access(TDMA)scheduler is also improved with the characteristics/behavior of fireflies and also executed.At last,the development approach shows the progression of the network lifetime,the total number of selected Cluster Heads(CH),the energy consumed by nodes,and the number of packets transmitted.This approach is compared with Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR)and Low Energy Adaptive Clustering Hierarchy(LEAH)protocols.Simulation is performed in MATLAB with the numerical outcomes showing the efficiency of the proposed approach.The energy consumption of sensor nodes is reduced by about 50%and increases the lifetime of nodes by 78%more than AODV,DSR and LEACH protocols.The parameters such as cluster formation,end to end delay,percentage of nodes alive and packet delivery ratio,are also evaluated...The anticipated method shows better trade-off in contrast to existing techniques.
文摘Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller.
文摘This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
文摘Software development effort estimation is considered a fundamental task for software development life cycle as well as for managing project cost, time and quality. Therefore, accurate estimation is a substantial factor in projects success and reducing the risks. In recent years, software effort estimation has received a considerable amount of attention from researchers?and became a challenge for software industry. In the last two decades, many researchers and practitioners proposed statistical and machine learning-based models for software effort estimation. In this work, Firefly Algorithm is proposed as a metaheuristic optimization method for optimizing the parameters of three COCOMO-based models. These models include the basic COCOMO model and other two models proposed in the literature as extensions of the basic COCOMO model. The developed estimation models are evaluated using different evaluation metrics. Experimental results show high accuracy and significant error minimization of Firefly Algorithm over other metaheuristic optimization algorithms including Genetic Algorithms and Particle Swarm Optimization.
基金supported by the National Key Technology R & D Program (2006BAK02A13)the National Basic Research Program of China (973Program, No.2007CB714507)
文摘A simple and rapid expression and purification method of recombinant firefly luciferase was developed for bacteria detection. A modified luciferase gene from North American firefly Photinus pyralis was cloned into pET28a expression vector and the recombinant protein was produced in Escherichia coli BL21. The recombinant luciferase,equipped with a polyhistidine affinity tag,was purified by immobilized metal ion affinity chromatography (IMAC). The approach generated an abundant expression and an efficient purification of a recombinant luciferase with final yield 1.995mg/L of cell culture. Experiments on the recombinant luciferase also showed that the relative light units (RUL) of the enzyme were 5.8×108,and the specific activity was 2.9×1010 RLU/mg. By applying adenosine triphosphate (ATP) bioluminescence to detection of the coin bacteria using the recombinant protein,the ATP content of bacteria was 9.48×10-16mol/mL,and was identical to the bacteria counts (4500CFU/mL) in order of magnitude. Taken together,our results provided a simple and efficacious method of the preparation of recombinant luciferase,which could be applied in the determination of bacteria via ATP bioluminescence.
基金funded by University Grant Commission with UGC-Ref.No.:3364/(NET-JUNE 2015).
文摘This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.
基金This research is supported by the Deanship of Scientific Research/Saudi Electronic University[Research Number:7638-HS-2019-1-1-S].Initials of authors who received the grant:N.N.HamadnehW.A.Khan.
文摘One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size.These heat sinks utilize plate or pin fins depending upon the required heat dissipation rate.They are designed to optimize overall performance.Elliptical pin fin heat sinks enhance heat transfer rates and reduce the pumping power.In this study,the Firefly Algorithm is implemented to optimize heat sinks with elliptical pin-fins.The pin-fins are arranged in an inline fashion.The nature-inspired metaheuristic algorithm performs powerfully and efficiently in solving numerical global optimization problems.Based on mass,energy,and entropy balance,three models are developed for thermal resistance,hydraulic resistance,and entropy generation rate in the heat sink.The major axis is used as the characteristic length,and the maximum velocity is used as the reference velocity.The entropy generation rate comprises the combined effect of thermal resistance and pressure drop.The total EGR is minimized by utilizing the firefly algorithm.The optimization model utilizes analytical/empirical correlations for the heat transfer coefficients and friction factors.It is shown that both thermal resistance and pressure drop can be simultaneously optimized using this algorithm.It is demonstrated that the performance of FFA is much better than PPA.
基金supported by the NationalNatural Science Foundation of China(No.11672098).
文摘Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.
基金This work is supported by the National Natural Science Foundation of China under Grant 61772179the Hunan Provincial Natural Science Foundation of China under Grant 2019JJ40005+3 种基金the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020the Double First-Class University Project of Hunan Province under Grant Xiangjiaotong[2018]469the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University under Grant IIPA19K02the Science Foundation of Hengyang Normal University under Grant 19QD13.
文摘Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.
基金funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R235)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.