By numerical integration of hydro-dynamical equations, we study the formation of elliptical and spiral galaxies starting from primordial linear density-velocity-gravitational perturbations. Both dark matter and baryon...By numerical integration of hydro-dynamical equations, we study the formation of elliptical and spiral galaxies starting from primordial linear density-velocity-gravitational perturbations. Both dark matter and baryons are included. Warm dark matter perturbations acquire two low mass cut-offs: the free-streaming cut-off due to the power spectrum free-streaming cut-off factor τ<sup>2</sup>(k), and the velocity dispersion cut-off. The Press-Schechter mass distribution does not include velocity dispersion, and should not be used below the velocity dispersion cut-off mass. From the formation of first galaxies and reionization, we estimate limits on the non-relativistic warm dark matter velocity dispersion at expansion parameter , with .展开更多
We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determinatio...We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: vhrms(1)=406±69 m/s. Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured vhrms(1), we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.展开更多
文摘By numerical integration of hydro-dynamical equations, we study the formation of elliptical and spiral galaxies starting from primordial linear density-velocity-gravitational perturbations. Both dark matter and baryons are included. Warm dark matter perturbations acquire two low mass cut-offs: the free-streaming cut-off due to the power spectrum free-streaming cut-off factor τ<sup>2</sup>(k), and the velocity dispersion cut-off. The Press-Schechter mass distribution does not include velocity dispersion, and should not be used below the velocity dispersion cut-off mass. From the formation of first galaxies and reionization, we estimate limits on the non-relativistic warm dark matter velocity dispersion at expansion parameter , with .
文摘We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: vhrms(1)=406±69 m/s. Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured vhrms(1), we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.