Silver-zinc(Ag-Zn)batteries are a promising battery system for flexible electronics owing to their high safety,high energy density,and stable output voltage.However,poor cycling performance,low areal capacity,and infe...Silver-zinc(Ag-Zn)batteries are a promising battery system for flexible electronics owing to their high safety,high energy density,and stable output voltage.However,poor cycling performance,low areal capacity,and inferior flexibility limit the practical application of Ag-Zn batteries.Herein,we develop a flexible quasi-solid-state Ag-Zn battery system with superior performance by using mild electrolyte and binder-free electrodes.Copper foam current collector is introduced to impede the growth of Zn dendrite,and the structure of Ag cathode is engineered by electrodeposition and chloridization process to improve the areal capacity.This novel battery demonstrates a remarkable cycle retention of 90%for 200 cycles at 3 mA cm^(-2).More importantly,this binder-free battery can afford a high capacity of 3.5 mAh cm^(-2)at 3 mA cm^(-2),an outstanding power density of 2.42 mW cm^(-2),and a maximum energy density of 3.4 mWh cm^(-2).An energy management circuit is adopted to boost the output voltage of a single battery,which can power electronic ink display and Bluetooth temperature and humidity sensor.The developed battery can even operate under the extreme conditions,such as being bent and sealed in solid ice.This work offers a path for designing electrodes and electrolyte toward high-performance flexible Ag-Zn batteries.展开更多
Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at ...Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high temperatures and the low ionic conductivity of the gel state at low temperatures.Herein,an integrated design of electrodes/fibrous GPEs modified with graphene oxide(GO)is reported.Due to the integrated structure of electrodes/GPEs,the strong interface affinity between electrodes and GPEs ensures that the GPEs spun on electrodes do not shrink at high temperatures(160-180℃),thus preventing a short circuit of electrodes.Moreover,after GO modification,oxygen-containing functional groups of GO can accelerate Li^(+)transport of GO-GPEs even at a low temperature of−15℃.When these GPEs are applied to flexible LIBs,the LIBs show excellent electrochemical performance,with satisfactory cycling stability of 82.9%at 1 C after 1000 cycles at 25℃.More importantly,at a high temperature of 160℃,the LIBs can also discharge normally and light the green light-emitting diode.Furthermore,at a low temperature of−15℃,92.7%of its room-temperature capacity can be obtained due to the accelerated Li^(+)transport caused by GO modification,demonstrating the great potential of this electrolyte and integrated structure for practical gel polymer LIB applications.展开更多
Flexible energy storage devices have played a significant role in multiscenario applications,while flexible zinc-ion batteries(ZIBs),as an essential branch,have developed rapidly in recent years.Three-dimensional(3D)p...Flexible energy storage devices have played a significant role in multiscenario applications,while flexible zinc-ion batteries(ZIBs),as an essential branch,have developed rapidly in recent years.Three-dimensional(3D)printing is an extremely advanced technology to design and modify the structure of batteries and provides unlimited possibilities for the diversified development of energy storage equipment.Herein,by utilizing 3D printing technology,carbon nanotube(CNT)is coated by MnO_(2) to form a flexible CNT@MnO_(2) ink as a cathode for flexible aqueous micro-ZIBs for the first time and zinc powder ink is used as an anode due to its high flexibility and bendability.The Zn//CNT@MnO_(2) flexible battery shows a stable capacity of 63μAh cm^(−2) at 0.4mA cm^(−2).When the battery is bent in different states,the maximum capacity loss compared with the initial value is only 2.72%,indicating its stability.This study shows the potential of 3D printing technology in the development of flexible manganese-based ZIBs.展开更多
In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive...In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive additive in anode as they bridged the zinc particles. Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS) was applied as a co-binder to enhance both the conductivity and flexibility. A poly(acrylic acid)(PAA) and polyvinyl alcohol(PVA) coated paper separator was used to enhance the battery performance where the PVP–PAA layer facilitated electrolyte storage. The batteries remained functional under bending conditions and after bending. Multiple design optimizations were also carried out for storage and performance purposes.展开更多
Flexible aqueous Ni//Zn batteries have attracted much attention as promising candidates for energy storage in the field of flexible electronics.However,the Ni-based cathodes still face the challenges of poor conductiv...Flexible aqueous Ni//Zn batteries have attracted much attention as promising candidates for energy storage in the field of flexible electronics.However,the Ni-based cathodes still face the challenges of poor conductivity,confined charge/mass transfer,and non-flexibility.In this work,we designed a hollow tubular structure consisting of a conductive silver nanowire (Ag NW) wrapped by active Ni Co layered double hydroxide (LDH),for enhancing the electrical conductivity,improving the charge/mass transfer kinetics,and facilitating the ion penetration.By optimizing the contents of Ni,Co and Ag NW,the Ni_(4)Co LDH@Ag_(1.5)NW composite shows a maximum specific capacity of 115.83 m Ah g^(-1)at 0.1 A g^(-1)measured in a two-electrode system.Highlightingly,the flexible aqueous Ni//Zn battery assembled by Ni_(4)Co LDH@Ag_(1.5)NW interwoven with multi-walled carbon nanotube cathode and Zn foil anode realizes a high power density of 160μW cm^(-2)at the energy density of 23.14μWh cm^(-2),which is superior compared with those of oxide/hydroxide based devices and even higher than those of many carbon-based supercapacitors,showing its promising potentials for flexible energy storage applications.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Flexible wearable batteries are widely used in smartwatches, foldable phones, and fitness trackers due to their thinness and small size. Zinc-based batteries have the advantages of low cost, high safety, and ecofriend...Flexible wearable batteries are widely used in smartwatches, foldable phones, and fitness trackers due to their thinness and small size. Zinc-based batteries have the advantages of low cost, high safety, and ecofriendliness, which are considered to be the best alternative to flexible lithium-ion batteries(LIBs).Therefore, wearable flexible zinc-ion batteries(FZIBs) have attracted considerable interest as a promising energy storage device. Electrospun nanofibers(ESNFs) have great potential for application in wearable FZIBs due to their low density, high porosity, large specific surface area, and flexibility. Moreover, electrospinning technology can achieve the versatility of nanofibers through structural design and incorporation of other multifunctional materials. This paper reviews a wide range of applications of electrospinning in FZIBs, mainly in terms of cathode, anode, separator, polymer electrolyte, and all-inone flexible batteries. Firstly, the electrospinning device, principles, and influencing parameters are briefly described, showing its positive impact on FZIBs. Subsequently, the energy storage principles and electrode configurations of FZIBs are described, and some of the common problems of the batteries are illustrated, including zinc anode dendrite growth, corrosion, cathode structure collapse, and poor electrical conductivity. This is followed by a comprehensive overview of research progress on the individual components of FZIBs(cathode, anode, separator, and polymer electrolyte) from the perspective of electrostatically spun fiber materials and an in-depth study of all-in-one flexible batteries. Finally, the challenges and future development of FZIBs are individually concluded and look forward. We hope that this work will provide new ideas and avenues for the development of advanced energy technologies and smart wearable systems.展开更多
M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site ...M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries.展开更多
The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
Flexible aqueous batteries have been thriving with the growing demand for wearable and portable electrical devices.In particular,flexible aqueous mul tivalent ion batteries(FAMIBs),the charge carriers of which include...Flexible aqueous batteries have been thriving with the growing demand for wearable and portable electrical devices.In particular,flexible aqueous mul tivalent ion batteries(FAMIBs),the charge carriers of which include Zn^(2+),Al^(3+),Mg^(2+),and Ca^(2+),have great potential for development owing to their high safety,high elemental abundance in the Earth's crust,and a multi-electron redox mechanism with a high theoretical specific capacity.Therefore,for a comprehensive understanding of this developing field,it is necessary to summarize the recent research progress of FAMIBs in a timely manner.Herein,the advancements of the state-of-the-art FAMIBs are reviewed,and the prospects toward this field are also proposed.This study focuses on the rational material and configuration design for FAMIBs in recent studies to achieve high battery performances under deformation conditions,which is elaborated on by classification of the anode,cathode,hydrogel electrolyte,and configurations of FAMIBs.Besides,the electrochemical performance of FAMIBs under flexible conditions is also reviewed from the perspective of their working voltage,specific capacity,and cycling stability.Finally,the ap proaches to improve the performance of FAMIBs are comprehensively eval uated,followed by the outlook on the challenges and opportunities in future development of FAMIBs.展开更多
Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a fl...Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a flexible aqueous Al ion battery is developed using cellulose paper as substrate.The water-in-salt electrolyte is stored inside the paper,while the electrodes are either printed or attached on the paper surface,leading to a lightweight and thin-film battery prototype.Currently,this battery can tolerate a charge and discharge rate as high as 4 A g^(-1) without losing its storage capacity.The charge voltage is around 2.2 V,while the discharge plateau of 1.6–1.8 V is among the highest in reported aqueous Al ion batteries,together with a high discharge specific capacity of~140 mAh g^(-1).However,due to the water electrolysis side reaction,the faradaic efficiency can only reach 85%with a cycle life of 250 due to the dry out of electrolyte.Benefited from using flexible materials and aqueous electrolyte,this paper-based Al ion battery can tolerate various deformations such as bending,rolling and even puncturing without losing its performance.When two single cells are connected in series,the battery pack can provide a charge voltage of 4.3 V and a discharge plateau as high as 3–3.6 V,which are very close to commercial Li ion batteries.Such a cheap,flexible and safe battery technology may be widely applied in low-cost and large-quantity applications,such as RFID tags,smart packages and wearable biosensors in the future.展开更多
MXenes add dozens of metallic conductors to the family of two-dimensional(2D)materials.A top-down synthesis approach removing A-layer atoms(e.g.,Al,Si,and Ga)in MAX phases to produce 2D flakes attaches various surface...MXenes add dozens of metallic conductors to the family of two-dimensional(2D)materials.A top-down synthesis approach removing A-layer atoms(e.g.,Al,Si,and Ga)in MAX phases to produce 2D flakes attaches various surface terminations to MXenes.With these terminations,MXenes show tunable properties,promising a range of applications from energy storage devices to electronics,including sensors,transistors,and antennas.MXenes are also excellent building blocks to create flexible films used for flexible and wearable devices.This article summarizes the synthesis of MXene flakes and highlights aspects that need attention for flexible devices.Rather than listing the development of energy storage devices in detail,we focus on the main challenges of and solutions for constructing high-performance devices.Moreover,we show the applications of MXene films in electronics to call on designs to construct a complete system based on MXene with good flexibility,which consists of a power source,sensors,transistors,and wireless communications.展开更多
The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-a...The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-air batteries feature Earth-abundant materials,environmental friendliness,and operational safety.Each part of one metal-air battery can significantly affect the overall performance.This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high-performance metal electrodes,solid-state electrolytes,and air electrodes.Bifunctional oxygen electrocatalysts with high activity and long-term stability for constructing efficient air electrodes in flexible metal-air batteries are summarized including metal-free carbon-based materials and nonprecious Co/Fe-based materials(alloys,metal oxides,metal sulfites,metal phosphates,metal nitrates,single-site metal-nitrogen-carbon materials,and composites).Finally,a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid-state metal-air batteries.展开更多
With the advent of flexible/wearable electronic devices,flexible lithium-ion batteries(LIBs)have attracted significant attention as optimal power source candidates.Flexible LIBs with good flexibility,mechanical stabil...With the advent of flexible/wearable electronic devices,flexible lithium-ion batteries(LIBs)have attracted significant attention as optimal power source candidates.Flexible LIBs with good flexibility,mechanical stability,and high energy density are still an enormous challenge.In recent years,many complex and diverse design methods for flexible LIBs have been reported.The design and evaluation of ideal flexible LIBs must take into consideration both mechanical and electrochemical factors.In this review,the recent progress and challenges of flexible LIBs are reviewed from a mechano-electrochemical perspective.The recent progress in flexible LIB design is addressed concerning flexible material and configuration design.The mechanical and electrochemical evaluations of flexible LIBs are also summarized.Furthermore,mechano-electrochemical perspectives for the future direction of flexible LIBs are also discussed.Finally,the relationship between mechanical loading and the electrode process is analyzed from a mechano-electrochemical perspective.The evaluation of flexible LIBs should be based on mechano-electrochemical processes.Reviews and perspectives are of great significance to the design and practicality of flexible LIBs,which is contributed to bridging the gap between laboratory exploration and practical applications.展开更多
Flexible lithium-ion batteries(LIBs) have received tremendous interest because they can provide essential flexible power for the emerging wearable electronics.However,the realization of the flexibility of LIBs is ofte...Flexible lithium-ion batteries(LIBs) have received tremendous interest because they can provide essential flexible power for the emerging wearable electronics.However,the realization of the flexibility of LIBs is often related to flexible substrates with high electrical resistance,which results in voltage loss of the battery and is unfavorable for their practical applications.In this work,we demonstrated the use of tab engineering to mediate the resistance of flexible batteries for high current output.The resistance of the obtained pouch cell can be decreased sharply and the output current can be significantly increased by a continuous tab with desirable power and energy density.The surprising performance of the flexible LIBs allows the tab on the current collector providing enough channels for electron transfer,thus enabling electrons to be transferred quickly and enhancing the electrochemical reaction kinetics.Such a flexible battery with sufficient output current could possibly solve some of the most critical problems for their practical applications in wearable electronics.展开更多
Flexibility and multifunctionality are now becoming inevitable worldwide tendencies for electronic devices to meet modern life's convenience,efficiency,and quality demand.To that end,developing flexible and wearab...Flexibility and multifunctionality are now becoming inevitable worldwide tendencies for electronic devices to meet modern life's convenience,efficiency,and quality demand.To that end,developing flexible and wearable energy storage devices is a must.Recently,aqueous zinc-ion batteries(ZIBs)and zinc-ion capacitors(ZICs)stand out as two of the most potent candidates for wearable electronics due to their excellent electrochemical performance,intrinsic safety,low cost,and functional controllability.Simultaneously,polymer electrolytes'introduction and rational design,especially various hydrogels,have endowed conventional ZIBs and ZICs with colorful functions,which has been regarded as a perfect answer for energy suppliers integrated into those advanced wearable electronic devices.This review focuses on the functional hydrogel electrolytes(HEs)and their application for ZIBs and ZICs.Previously reported HEs for ZIBs and ZICs were classified and analyzed,from the flexibility to mechanical endurance,temperature adaptability,electrochemical stability,and finally cell-level ZIBs and ZICs based on multifunctional HEs.Besides introducing the diverse and exciting functions of HEs,working principles were also analyzed.Ultimately,all the details of these examples were summarized,and the related challenges,constructive solutions,and futural prospects of functional ZIBs and ZICs were also dedicatedly evaluated.展开更多
Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with ...Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.展开更多
The development of an air electrode that is flexible in physical property and highly active and durable at different geometric status for both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of cruc...The development of an air electrode that is flexible in physical property and highly active and durable at different geometric status for both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of crucial importance for the rational design of flexible rechargeable Zn-air batteries(ZABs).Considering their good elasticity,high conductivity,and superior thermal and chemical stability,carbon nanotubes have been widely used as a catalyst support in various electrocatalysts,while oxide or metal nanoparticles have been frequently deposited on the carbon nanotube substrate to perform as the active materials.Considering the poor contact between active materials and carbon nanotubes may introduce a challenge for long-term operating stability,in particular in flexible devices,pure carbon electrocatalyst is highly appreciated.Herein,a free-standing air electrode with cobalt nanoparticles encapsulated N-codoped carbon nanotube arrays uniformly grown on the surface of carbon fiber cloth is developed by a two-step in situ growth method.Such a carbon-based electrode shows outstanding activity for both ORR and OER.The flexible ZAB with such air electrode shows superior flexibility and stability working under extreme bending conditions.Moreover,the polarization and round-trip efficiency for the flexible battery is 0.67 V and 64.4%at 2 mA/cm2,respectively,even after being operated for 30 hours.This study provides a feasible way to design all carbon-based free-standing and flexible electrode and enlightens the electrode design for flexible energy conversion/storage devices.展开更多
To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently neede...To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production.展开更多
Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of d...Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of dissolved polysulfides,random deposition of insulating lithium sulfides,and poor mechanical flexibility of both electrodes seriously restrict the utilization of lithium and stabilities of lithium and sulfur for practical applications.Herein,we present a cooperative strategy employing silk fibroin/sericin to stabilize flexible lithium–sulfur full batteries by simultaneously inhibiting lithium dendrites,adsorbing liquid polysulfides,and anchoring solid lithium sulfides.Benefiting from the abundant nitrogen-and oxygen-containing functional groups,the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode,while the carbonized fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders,respectively,for stabilizing the sulfur cathode.Consequently,the assembled Li–S full battery provided a high areal capacity(5.6 mAh cm−2),limited lithium excess(90%),a high volumetric energy density(457.2 Wh L^(−1)),high-capacity retention(99.8%per cycle),and remarkable bending capability(6000 flexing cycles at a small radius of 5 mm).展开更多
基金financial support from the Australian Research Council(LP1900113)
文摘Silver-zinc(Ag-Zn)batteries are a promising battery system for flexible electronics owing to their high safety,high energy density,and stable output voltage.However,poor cycling performance,low areal capacity,and inferior flexibility limit the practical application of Ag-Zn batteries.Herein,we develop a flexible quasi-solid-state Ag-Zn battery system with superior performance by using mild electrolyte and binder-free electrodes.Copper foam current collector is introduced to impede the growth of Zn dendrite,and the structure of Ag cathode is engineered by electrodeposition and chloridization process to improve the areal capacity.This novel battery demonstrates a remarkable cycle retention of 90%for 200 cycles at 3 mA cm^(-2).More importantly,this binder-free battery can afford a high capacity of 3.5 mAh cm^(-2)at 3 mA cm^(-2),an outstanding power density of 2.42 mW cm^(-2),and a maximum energy density of 3.4 mWh cm^(-2).An energy management circuit is adopted to boost the output voltage of a single battery,which can power electronic ink display and Bluetooth temperature and humidity sensor.The developed battery can even operate under the extreme conditions,such as being bent and sealed in solid ice.This work offers a path for designing electrodes and electrolyte toward high-performance flexible Ag-Zn batteries.
基金supported by Beijing Municipal Science&Technology Commission Nos.Z181100004818004,Z181100001018029,and Z191100006119027.
文摘Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high temperatures and the low ionic conductivity of the gel state at low temperatures.Herein,an integrated design of electrodes/fibrous GPEs modified with graphene oxide(GO)is reported.Due to the integrated structure of electrodes/GPEs,the strong interface affinity between electrodes and GPEs ensures that the GPEs spun on electrodes do not shrink at high temperatures(160-180℃),thus preventing a short circuit of electrodes.Moreover,after GO modification,oxygen-containing functional groups of GO can accelerate Li^(+)transport of GO-GPEs even at a low temperature of−15℃.When these GPEs are applied to flexible LIBs,the LIBs show excellent electrochemical performance,with satisfactory cycling stability of 82.9%at 1 C after 1000 cycles at 25℃.More importantly,at a high temperature of 160℃,the LIBs can also discharge normally and light the green light-emitting diode.Furthermore,at a low temperature of−15℃,92.7%of its room-temperature capacity can be obtained due to the accelerated Li^(+)transport caused by GO modification,demonstrating the great potential of this electrolyte and integrated structure for practical gel polymer LIB applications.
基金supported by the National Natural Science Foundation of China(No.52071171)the Liaoning Revitalization Talents Program-Pan Deng Scholars(XLYC1802005)+6 种基金the Liaoning BaiQianWan Talents Program(LNBQW2018B0048)the Natural Science Fund of Liaoning Province for Excellent Young Scholars(2019-YQ-04)the Key Project of Scientific Research of the Education Department of Liaoning Province(LZD201902)the Foundation for Young Scholars of Liaoning University(a252102001)the Australian Research Council(ARC)Future Fellowship(FT210100298)the CSIRO Energy Centre and Kick-Start Projectthe Victorian Government's support through the provision of a grant from veski-Study Melbourne Research Partnerships(SMRP)project,Shenyang Science and Technology Project(21-108-9-04).
文摘Flexible energy storage devices have played a significant role in multiscenario applications,while flexible zinc-ion batteries(ZIBs),as an essential branch,have developed rapidly in recent years.Three-dimensional(3D)printing is an extremely advanced technology to design and modify the structure of batteries and provides unlimited possibilities for the diversified development of energy storage equipment.Herein,by utilizing 3D printing technology,carbon nanotube(CNT)is coated by MnO_(2) to form a flexible CNT@MnO_(2) ink as a cathode for flexible aqueous micro-ZIBs for the first time and zinc powder ink is used as an anode due to its high flexibility and bendability.The Zn//CNT@MnO_(2) flexible battery shows a stable capacity of 63μAh cm^(−2) at 0.4mA cm^(−2).When the battery is bent in different states,the maximum capacity loss compared with the initial value is only 2.72%,indicating its stability.This study shows the potential of 3D printing technology in the development of flexible manganese-based ZIBs.
文摘In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive additive in anode as they bridged the zinc particles. Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS) was applied as a co-binder to enhance both the conductivity and flexibility. A poly(acrylic acid)(PAA) and polyvinyl alcohol(PVA) coated paper separator was used to enhance the battery performance where the PVP–PAA layer facilitated electrolyte storage. The batteries remained functional under bending conditions and after bending. Multiple design optimizations were also carried out for storage and performance purposes.
基金sponsored by the National Natural Science Foundation of China(61804054)the Natural Science Foundation of Shanghai(18ZR1410400)+2 种基金the Shanghai Sailing Program(17YF1403300)the Shanghai Aerospace Science and Technology Innovation Fundation(SISP2018)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2019-067)。
文摘Flexible aqueous Ni//Zn batteries have attracted much attention as promising candidates for energy storage in the field of flexible electronics.However,the Ni-based cathodes still face the challenges of poor conductivity,confined charge/mass transfer,and non-flexibility.In this work,we designed a hollow tubular structure consisting of a conductive silver nanowire (Ag NW) wrapped by active Ni Co layered double hydroxide (LDH),for enhancing the electrical conductivity,improving the charge/mass transfer kinetics,and facilitating the ion penetration.By optimizing the contents of Ni,Co and Ag NW,the Ni_(4)Co LDH@Ag_(1.5)NW composite shows a maximum specific capacity of 115.83 m Ah g^(-1)at 0.1 A g^(-1)measured in a two-electrode system.Highlightingly,the flexible aqueous Ni//Zn battery assembled by Ni_(4)Co LDH@Ag_(1.5)NW interwoven with multi-walled carbon nanotube cathode and Zn foil anode realizes a high power density of 160μW cm^(-2)at the energy density of 23.14μWh cm^(-2),which is superior compared with those of oxide/hydroxide based devices and even higher than those of many carbon-based supercapacitors,showing its promising potentials for flexible energy storage applications.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金National Natural Science Foundation of China (52103061)Young Elite Scientist Sponsorship Program by China Association for Science and Technology (YESS20220298)+2 种基金Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00400)China Postdoctoral Science Foundation (2021T140419, 2022M711959)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘Flexible wearable batteries are widely used in smartwatches, foldable phones, and fitness trackers due to their thinness and small size. Zinc-based batteries have the advantages of low cost, high safety, and ecofriendliness, which are considered to be the best alternative to flexible lithium-ion batteries(LIBs).Therefore, wearable flexible zinc-ion batteries(FZIBs) have attracted considerable interest as a promising energy storage device. Electrospun nanofibers(ESNFs) have great potential for application in wearable FZIBs due to their low density, high porosity, large specific surface area, and flexibility. Moreover, electrospinning technology can achieve the versatility of nanofibers through structural design and incorporation of other multifunctional materials. This paper reviews a wide range of applications of electrospinning in FZIBs, mainly in terms of cathode, anode, separator, polymer electrolyte, and all-inone flexible batteries. Firstly, the electrospinning device, principles, and influencing parameters are briefly described, showing its positive impact on FZIBs. Subsequently, the energy storage principles and electrode configurations of FZIBs are described, and some of the common problems of the batteries are illustrated, including zinc anode dendrite growth, corrosion, cathode structure collapse, and poor electrical conductivity. This is followed by a comprehensive overview of research progress on the individual components of FZIBs(cathode, anode, separator, and polymer electrolyte) from the perspective of electrostatically spun fiber materials and an in-depth study of all-in-one flexible batteries. Finally, the challenges and future development of FZIBs are individually concluded and look forward. We hope that this work will provide new ideas and avenues for the development of advanced energy technologies and smart wearable systems.
基金supported by the National Natural Science Foundation of China(21603171)the Basic Research Foundation of Xi’an Jiaotong University(xjh012020027)。
文摘M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries.
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.
基金supported by the National Natural Science Foundation of China(51822201,52172178,and 21972007).
文摘Flexible aqueous batteries have been thriving with the growing demand for wearable and portable electrical devices.In particular,flexible aqueous mul tivalent ion batteries(FAMIBs),the charge carriers of which include Zn^(2+),Al^(3+),Mg^(2+),and Ca^(2+),have great potential for development owing to their high safety,high elemental abundance in the Earth's crust,and a multi-electron redox mechanism with a high theoretical specific capacity.Therefore,for a comprehensive understanding of this developing field,it is necessary to summarize the recent research progress of FAMIBs in a timely manner.Herein,the advancements of the state-of-the-art FAMIBs are reviewed,and the prospects toward this field are also proposed.This study focuses on the rational material and configuration design for FAMIBs in recent studies to achieve high battery performances under deformation conditions,which is elaborated on by classification of the anode,cathode,hydrogel electrolyte,and configurations of FAMIBs.Besides,the electrochemical performance of FAMIBs under flexible conditions is also reviewed from the perspective of their working voltage,specific capacity,and cycling stability.Finally,the ap proaches to improve the performance of FAMIBs are comprehensively eval uated,followed by the outlook on the challenges and opportunities in future development of FAMIBs.
基金The authors would like to acknowledge the CRF grant of the Hong Kong Research Grant Council(C5031-20G)the CRCG grant of the University of Hong Kong(201910160008)the research start-up fund of Harbin Institute of Technology,Shenzhen(CA45001039)for providing funding support to this project.
文摘Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a flexible aqueous Al ion battery is developed using cellulose paper as substrate.The water-in-salt electrolyte is stored inside the paper,while the electrodes are either printed or attached on the paper surface,leading to a lightweight and thin-film battery prototype.Currently,this battery can tolerate a charge and discharge rate as high as 4 A g^(-1) without losing its storage capacity.The charge voltage is around 2.2 V,while the discharge plateau of 1.6–1.8 V is among the highest in reported aqueous Al ion batteries,together with a high discharge specific capacity of~140 mAh g^(-1).However,due to the water electrolysis side reaction,the faradaic efficiency can only reach 85%with a cycle life of 250 due to the dry out of electrolyte.Benefited from using flexible materials and aqueous electrolyte,this paper-based Al ion battery can tolerate various deformations such as bending,rolling and even puncturing without losing its performance.When two single cells are connected in series,the battery pack can provide a charge voltage of 4.3 V and a discharge plateau as high as 3–3.6 V,which are very close to commercial Li ion batteries.Such a cheap,flexible and safe battery technology may be widely applied in low-cost and large-quantity applications,such as RFID tags,smart packages and wearable biosensors in the future.
基金National Natural Science Foundation of China,Grant/Award Number:52002247Deutsche Forschungsgemeinschaft,Grant/Award Number:ZH 989/2-1Natural Science Foundation of Guangdong Province,Grant/Award Number:2019A1515011344。
文摘MXenes add dozens of metallic conductors to the family of two-dimensional(2D)materials.A top-down synthesis approach removing A-layer atoms(e.g.,Al,Si,and Ga)in MAX phases to produce 2D flakes attaches various surface terminations to MXenes.With these terminations,MXenes show tunable properties,promising a range of applications from energy storage devices to electronics,including sensors,transistors,and antennas.MXenes are also excellent building blocks to create flexible films used for flexible and wearable devices.This article summarizes the synthesis of MXene flakes and highlights aspects that need attention for flexible devices.Rather than listing the development of energy storage devices in detail,we focus on the main challenges of and solutions for constructing high-performance devices.Moreover,we show the applications of MXene films in electronics to call on designs to construct a complete system based on MXene with good flexibility,which consists of a power source,sensors,transistors,and wireless communications.
基金Australian Research Council,Grant/Award Numbers:DP190101008,FT190100058。
文摘The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-air batteries feature Earth-abundant materials,environmental friendliness,and operational safety.Each part of one metal-air battery can significantly affect the overall performance.This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high-performance metal electrodes,solid-state electrolytes,and air electrodes.Bifunctional oxygen electrocatalysts with high activity and long-term stability for constructing efficient air electrodes in flexible metal-air batteries are summarized including metal-free carbon-based materials and nonprecious Co/Fe-based materials(alloys,metal oxides,metal sulfites,metal phosphates,metal nitrates,single-site metal-nitrogen-carbon materials,and composites).Finally,a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid-state metal-air batteries.
基金supported by National Natural Science Foundation of China(No.52074036)Technology Innovation Program of Beijing Institute of Technology(No.2019CX01021)BIT Teli Young Fellow。
文摘With the advent of flexible/wearable electronic devices,flexible lithium-ion batteries(LIBs)have attracted significant attention as optimal power source candidates.Flexible LIBs with good flexibility,mechanical stability,and high energy density are still an enormous challenge.In recent years,many complex and diverse design methods for flexible LIBs have been reported.The design and evaluation of ideal flexible LIBs must take into consideration both mechanical and electrochemical factors.In this review,the recent progress and challenges of flexible LIBs are reviewed from a mechano-electrochemical perspective.The recent progress in flexible LIB design is addressed concerning flexible material and configuration design.The mechanical and electrochemical evaluations of flexible LIBs are also summarized.Furthermore,mechano-electrochemical perspectives for the future direction of flexible LIBs are also discussed.Finally,the relationship between mechanical loading and the electrode process is analyzed from a mechano-electrochemical perspective.The evaluation of flexible LIBs should be based on mechano-electrochemical processes.Reviews and perspectives are of great significance to the design and practicality of flexible LIBs,which is contributed to bridging the gap between laboratory exploration and practical applications.
基金supported by the National Natural Science Foundation of China(51202095,51861009)the Department of Science&Technology of Jiangxi Province(20153BCB23011,20194BCJ22012)。
文摘Flexible lithium-ion batteries(LIBs) have received tremendous interest because they can provide essential flexible power for the emerging wearable electronics.However,the realization of the flexibility of LIBs is often related to flexible substrates with high electrical resistance,which results in voltage loss of the battery and is unfavorable for their practical applications.In this work,we demonstrated the use of tab engineering to mediate the resistance of flexible batteries for high current output.The resistance of the obtained pouch cell can be decreased sharply and the output current can be significantly increased by a continuous tab with desirable power and energy density.The surprising performance of the flexible LIBs allows the tab on the current collector providing enough channels for electron transfer,thus enabling electrons to be transferred quickly and enhancing the electrochemical reaction kinetics.Such a flexible battery with sufficient output current could possibly solve some of the most critical problems for their practical applications in wearable electronics.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC),through the Discovery Grant Program(RGPIN-2018-06725)the Discovery Accelerator Supplement Grant Program(RGPAS-2018-522651)+1 种基金by the New Frontiers in Research Fund-Exploration Program(NFRFE-2019-00488)support from the Canada First Research Excellence Fund as part of the University of Alberta's Future Energy Systems research initiative(FES-T06-Q03).
文摘Flexibility and multifunctionality are now becoming inevitable worldwide tendencies for electronic devices to meet modern life's convenience,efficiency,and quality demand.To that end,developing flexible and wearable energy storage devices is a must.Recently,aqueous zinc-ion batteries(ZIBs)and zinc-ion capacitors(ZICs)stand out as two of the most potent candidates for wearable electronics due to their excellent electrochemical performance,intrinsic safety,low cost,and functional controllability.Simultaneously,polymer electrolytes'introduction and rational design,especially various hydrogels,have endowed conventional ZIBs and ZICs with colorful functions,which has been regarded as a perfect answer for energy suppliers integrated into those advanced wearable electronic devices.This review focuses on the functional hydrogel electrolytes(HEs)and their application for ZIBs and ZICs.Previously reported HEs for ZIBs and ZICs were classified and analyzed,from the flexibility to mechanical endurance,temperature adaptability,electrochemical stability,and finally cell-level ZIBs and ZICs based on multifunctional HEs.Besides introducing the diverse and exciting functions of HEs,working principles were also analyzed.Ultimately,all the details of these examples were summarized,and the related challenges,constructive solutions,and futural prospects of functional ZIBs and ZICs were also dedicatedly evaluated.
基金supported by the National Key Research and Development Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金the Science and Technology Innovation Program of Hunan Province(2021RC3014)Innovation-Driven Project of Central South University(No.2020CX007)。
文摘Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
基金Zongping Shao and Kaiming Liao thank the funding support provide by the National Key R&D Program of China(Grant no.2018YFB0905400)Kaiming Liao thanks the funding support provided by the National Natural Science Foundation of China(Grant no.51802152)the Natural Science Foundation of Jiangsu Province of China(Grant no.BK20170974).A Project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The development of an air electrode that is flexible in physical property and highly active and durable at different geometric status for both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of crucial importance for the rational design of flexible rechargeable Zn-air batteries(ZABs).Considering their good elasticity,high conductivity,and superior thermal and chemical stability,carbon nanotubes have been widely used as a catalyst support in various electrocatalysts,while oxide or metal nanoparticles have been frequently deposited on the carbon nanotube substrate to perform as the active materials.Considering the poor contact between active materials and carbon nanotubes may introduce a challenge for long-term operating stability,in particular in flexible devices,pure carbon electrocatalyst is highly appreciated.Herein,a free-standing air electrode with cobalt nanoparticles encapsulated N-codoped carbon nanotube arrays uniformly grown on the surface of carbon fiber cloth is developed by a two-step in situ growth method.Such a carbon-based electrode shows outstanding activity for both ORR and OER.The flexible ZAB with such air electrode shows superior flexibility and stability working under extreme bending conditions.Moreover,the polarization and round-trip efficiency for the flexible battery is 0.67 V and 64.4%at 2 mA/cm2,respectively,even after being operated for 30 hours.This study provides a feasible way to design all carbon-based free-standing and flexible electrode and enlightens the electrode design for flexible energy conversion/storage devices.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 51972349, U1801255 and 91963210)。
文摘To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production.
基金This work was financially supported by Science and Technology Program of Guangzhou(202002030307)Guangdong Basic and Applied Basic Research Foundation(2019A1515110881)+1 种基金Key-Area Research and Development Program of Guangdong Province(2020B090919001 and 2019B090908001)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001).
文摘Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of dissolved polysulfides,random deposition of insulating lithium sulfides,and poor mechanical flexibility of both electrodes seriously restrict the utilization of lithium and stabilities of lithium and sulfur for practical applications.Herein,we present a cooperative strategy employing silk fibroin/sericin to stabilize flexible lithium–sulfur full batteries by simultaneously inhibiting lithium dendrites,adsorbing liquid polysulfides,and anchoring solid lithium sulfides.Benefiting from the abundant nitrogen-and oxygen-containing functional groups,the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode,while the carbonized fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders,respectively,for stabilizing the sulfur cathode.Consequently,the assembled Li–S full battery provided a high areal capacity(5.6 mAh cm−2),limited lithium excess(90%),a high volumetric energy density(457.2 Wh L^(−1)),high-capacity retention(99.8%per cycle),and remarkable bending capability(6000 flexing cycles at a small radius of 5 mm).