期刊文献+
共找到411篇文章
< 1 2 21 >
每页显示 20 50 100
Interconnected microstructure and flexural behavior of Ti_(2)C-Ti composites with superior Young’s modulus
1
作者 Fengbo Sun Rui Zhang +3 位作者 Fanchao Meng Shuai Wang Lujun Huang Lin Geng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2088-2101,共14页
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re... To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites. 展开更多
关键词 titanium matrix composites titanium carbide INTERFACE Young’s modulus flexural behavior
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
2
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
3
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section
4
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第3期23-53,共31页
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans... Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre. 展开更多
关键词 Thin Wall Theory Cantilever Beam Open Channel Section Principal Axes Flexure Transverse Shear TORSION Shear Centre Shear Flow WARPING Fixed-End Constraint
下载PDF
Surface Processes Driving Intracontinental Basin Subsidence in the Context of India–Eurasia Collision:Evidence from Flexural Subsidence Modeling of the Cenozoic Southern Tarim Basin along the West Kunlun Foreland,NW Tibetan Plateau
5
作者 HUANG Hao LIN Xiubin +4 位作者 AN Kaixuan ZHANG Yuqing CHEN Hanlin CHENG Xiaogan LI Chunyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1778-1786,共9页
The India–Eurasia collision has produced a number of Cenozoic deep intracontinental basins,which bear important information for revealing the far-afield responses to the remote collision.Despite their significance,th... The India–Eurasia collision has produced a number of Cenozoic deep intracontinental basins,which bear important information for revealing the far-afield responses to the remote collision.Despite their significance,their subsiding mechanism remains the subject of debate,with end-member models attributing it to either orogenic or sedimentary load.In this study,we conduct flexural subsidence modeling with a two-dimensional finite elastic plate model on the Hotan-Mazatagh section along the southern Tarim Basin,which defines a key region in the foreland of the West Kunlun Orogen,along the NW margin of the Tibetan Plateau.The modeling results indicate that the orogenic load of West Kunlun triggers the southern Tarim Basin to subside by up to less than ~6 km,with its impact weakening towards the basin interiors until ~230 km north from the Karakax fault.The sedimentary load,consisting of Cenozoic strata,forces the basin to subside by ~2 to~7 km.In combination with the retreat of the proto-Paratethys Sea and the paleogeographic reorganization of the Tarim Basin,we propose that surface processes,in particular a shift from an exorheic to an endorheic drainage system associated with the consequent thick sedimentary load,played a decisive role in forming deep intracontinental basins in the context of the India-Eurasia collision. 展开更多
关键词 flexural subsidence modeling India-Eurasia collision West Kunlun Tarim Basin Northwest Tibetan Plateau
下载PDF
Factorial Experimental Design to Study the Effects of Layers and Fiber Content on Concrete Flexural Behavior
6
作者 Dumbiri H. Odia 《Open Journal of Civil Engineering》 CAS 2023年第1期83-102,共20页
Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The... Experimentation has come a long in helping researchers achieve breakthroughs in their different scientific areas and engineering happens to be one of those areas with the most impact from experimental advancement. The need for valid experimental results free from biases and confounding conclusions has prompted the development of new experimental techniques that takes consideration of all applicable factor and combinations in providing answers on a research topic, and the Factorial Experimental design credited to Sir Ronald Fisher is one technique yielding highly valid results. This paper uses the factorial design of experiments to research the flexural impact of polyvinyl acetate fiber and layered concrete in construction. The experiment considered two levels of fiber contents and two levels of layers, and prepared samples with all combinations of the variable factors. The samples were tested after 7 days from casting for flexural strength and an advance statistical analysis was performed on the flexural responses of the samples using R-program. The results from the analyses revealed the significance of the variables to the flexural strength of the samples, as well as their interactions. The experiment concluded that based on the number of layers and fiber content used for the experiment, casting concrete in layers does have a significant negative effect on the flexural strength of concrete, and the failure pattern of concrete members under flexural load in evidently influenced by the material composition of the concrete, and that it can be evidently influenced by casting the concrete in layers. 展开更多
关键词 Experimental Design Concrete flexural Strength Factorial Design of Experiments Concrete Fibers Concrete Layers
下载PDF
Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams 被引量:8
7
作者 蔡景明 潘金龙 袁方 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期330-335,共6页
To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected t... To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams. 展开更多
关键词 engineered cementitious composites (ECC) DUCTILITY flexural behavior finite element
下载PDF
Experimental study on ultimate flexural capacity of steel encased concrete composite beams 被引量:8
8
作者 肖辉 李爱群 杜德润 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期191-196,共6页
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c... Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data. 展开更多
关键词 steel encased concrete composite beam ultimate flexural capacity finiteelement analysis
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
9
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber C/C composites flexural destruction crack propagation
下载PDF
Ultimate flexural strength of normal section of FRP-confined RC circular columns 被引量:2
10
作者 顾冬生 吴刚 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期107-111,共5页
Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo... Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code. 展开更多
关键词 reinforced concrete(RC)circular columns flexural capacity of normal section fiber-reinforced polymer (FRP) CONFINEMENT
下载PDF
Flexural behaviors of FRP strengthened corroded RC beams 被引量:1
11
作者 潘金龙 王路平 +1 位作者 袁方 黄毅芳 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期77-83,共7页
The flexural behavior of eight FRP ( fiber reinforced polymer) strengthened RC (reinforced concrete) beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influen... The flexural behavior of eight FRP ( fiber reinforced polymer) strengthened RC (reinforced concrete) beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influences of the corrosion rate on crack pattern, failure mechanism, ultimate strength, ductility and deformation capacity are also analyzed. Modeling results show that the beams with low corrosion rates fail by the crushing of the concrete in the compression zone. For the beams with medium corrosion rates, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding, and the beams finally fail by the debonding of the FRP plates. For the beams with high corrosion rates, the bond slip occurs before steel yielding, and the beams finally fail by the crushing of the concrete in the compression zone. The higher the corrosion rates of the longitudinal reinforcement, the more the carrying capacity of FRP strengthened RC beams reduces. The carrying capacity of RCB-1 (the corrosion rate is 0) is 115 kN, and the carrying capacity of RCB-7 (the corrosion rate is 20% ) is 42 kN. The deformation capacity of FRP strengthened corroded RC beams is higher than that of FRP strengthened uucorroded RC beams. The ultimate deflection of RCB-1 and RCB-7 are 20 mm and 35 nun, respectively, and the ultimate deflection of RCB-5 (the corrosion rate is 10% ) reaches 60 ilUn. 展开更多
关键词 corroded reinforced concrete beam FRP fberreinforced polymer strengthening numerical analysis flexural behavior
下载PDF
Flexural behavior of reinforced concrete beams with high performance fiber reinforced cementitious composites 被引量:5
12
作者 SIVA Chidambaram R PANKAJ Agarwal 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2609-2622,共14页
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t... This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique. 展开更多
关键词 reinforced concrete beams fiber reinforced composites flexural behavior flexural damage ratio
下载PDF
Experimental Study on Flexural Behaviour of Circular Concrete-Filled FRP-PVC Tubular Members 被引量:3
13
作者 MA Shenglan LIN Quan JIANG Shaofei 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2012年第6期988-996,共9页
An experimental investigation was conducted on the flexural behavior of FRP-PVC confined concrete circular tubular members.A total of six specimens were prepared and tested under flexural loading.The main parameters v... An experimental investigation was conducted on the flexural behavior of FRP-PVC confined concrete circular tubular members.A total of six specimens were prepared and tested under flexural loading.The main parameters varied in the tests were the layer of FRP and the strengthening approach of BFRP and CFRP.The failure modes,ultimate bending capacity and stress-strain relation curves were investigated in details.Furthermore,the relation model of moment(M)-curvature(φ)was studied,and on the basis of M-φ relation model,a simplified formula was presented to compute the ultimate bending moment capacity.The results show that the external confinement of concrete specimens by FRP-PVC tubes results in enhancing the ultimate bending strength and ultimate deformation,and the ultimate bending capacity increased with the FRP layers.Simultaneously,the reinforcement effect in CFRP is better than that in BFRP.The ultimate bending moment capacity values predicted by the presented formula agree well with the experimental results,which imply that the presented formula is applicable and efficient for prediction of the ultimate bending moment capacity as well. 展开更多
关键词 FRP-PVC tubes flexural loading ultimate bending moment capacity the section flexural coefficient
下载PDF
Properties and calculation of normal section bearing capacity of RC flexural beam with skin textile reinforcement 被引量:2
14
作者 尹世平 吕恒林 徐世烺 《Journal of Central South University》 SCIE EI CAS 2013年第6期1731-1741,共11页
In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement... In order to overcome the wide crack of ordinary reinforced concrete (RC) at service stage which affects the service performance and durability of structures,a kind of concrete structure with skin textile reinforcement is proposed,namely a part of concrete cover of RC members is replaced by textile reinforced concrete (TRC).The flexural experimental results indicate that when the reinforcement ratios of steel bars are constant,compared with control beams,the average value of crack loads of the beams,whose reinforcement ratios of textile are 0.018%,0.036% and 0.055%,increases by 15.5%,20.4% and 31.1%,respectively,the average value of yield loads respectively increases by 12.5%,19.9% and 21.1% and the average value of ultimate loads respectively increases by 8.5%,26.0% and 44.0%,respectively.Considerable reduction in cracks width and spacing is observed for specimens with a TRC layer,and when the beams yield,the maximum crack width of the beam with textile stuck no sand and the beam with textile stuck sand is reduced by around 60% and 70%,respectively.Surface treatment of textile and mixing polypropylene fiber into fine grained concrete contribute to enhance the service performance of the flexural element.Embedding U-shaped hoop has almost no effect on the control of the crack width.Finally,the calculation method of ultimate bearing capacity of this flexural component with TRC layer was presented.Comparison between the calculated and the experimental values reveals satisfactory agreement,and the maximum error is no more than 6%. 展开更多
关键词 reinforced concrete TEXTILE crack width limitation flexural behavior calculation of flexural capacity
下载PDF
Fracture mechanism of 2D-C/C composites with pure smooth laminar pyrocarbon matrix under flexural loading
15
作者 曹伟锋 李贺军 +3 位作者 郭领军 张守阳 李克智 邓海亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2141-2146,共6页
Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PL... Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PLM) and scanning electron microscope (SEM), and the flexural behaviors before and after heat-treatment were studied with a universal mechanical testing machine. The fracture mechanism of the composites was discussed in detail. The results show that, carbon matrix exhibits pure smooth laminar (SL) characteristic including numerous wrinkled layered structures and some inter-laminar micro-cracks. With the decreasing density, the strength of the composites decreases and the toughness increases slightly; after 2500 °C heat-treatment, the inter-laminar micro-cracks in matrix increase, the strength decreases, and the toughness obviously increases. The fracture mode of the composites changes from brittle to pseudo-plastic characteristic due to more crack deflections in SL matrix. 展开更多
关键词 C/C composites PYROCARBON FRACTURE flexural behavior
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
16
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites (ECC) reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
A Comparative Study on the Flexural Behaviour of Waffle and Solid Slab Models When Subjected to Point Load
17
作者 Akinyele J. Olawale Alade G. Ayodele 《Journal of Civil Engineering and Architecture》 2014年第5期588-594,共7页
The determinations of flexural behavior of some engineering structures are based on different theories and equations, but it has been observed that some of these equations may not give true representation. This work h... The determinations of flexural behavior of some engineering structures are based on different theories and equations, but it has been observed that some of these equations may not give true representation. This work has looked into the difference that may occur between theoretical and experimental results. An experimental test carried out on models of waffle and solid slabs structures were described and results from twenty test samples are presented. Each specimen was subjected to an incremental axial loading of 1 kN interval after 28 days of casting. The flexural moments, deflections and crack width at failure were obtained. The experimental flexural crack and theoretical flexural cracks for both types of slabs were compared. The result for flexural moments for waffle was 5.526 kNm, while solid slab was 3.684 kNm. The deflections showed that waffle slabs has 3.64 mm while solid has 9.28 mm, hence waffle has a higher structural stiffness than solid slabs, but the flexural cracks did not give the same results especially for the estimated crack width. It was concluded that estimated results based on developed equations may not be accurate because it is based on ideal situation. 展开更多
关键词 MODELS waffle slab solid slabs flexural moments flexural cracks deflections.
下载PDF
Effect of Fiber Weight Ratio and Fiber Modification on Flexural Properties of Posidonia-Polyester Composites
18
作者 S. Zannen L. Ghali +1 位作者 M. T. Halimi M. Ben Hassen 《Open Journal of Composite Materials》 2016年第3期69-77,共9页
The main objective of this research is to study the effect of fiber weight ratio and chemical fiber modification on flexural properties of composites reinforced with Posidonia fiber. An unsaturated polyester matrix re... The main objective of this research is to study the effect of fiber weight ratio and chemical fiber modification on flexural properties of composites reinforced with Posidonia fiber. An unsaturated polyester matrix reinforced with untreated and treated Posidonia fibers was fabricated under various fiber weight ratios. Results showed that the combined chemical treatment provided better mechanical properties of composites in comparison with untreated fiber. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural modulus was observed for 10% fiber weight ratio for composites reinforced with treated fibers. SEM photographs revealed a different fracture surface between Posidonia fibers reinforced polyester composites. 展开更多
关键词 Composites Posidonia Fiber Weight Ratio flexural Modulus flexural Strength ELONGATION SEM Micrographs
下载PDF
SCATTERING OF FLEXURAL WAVES AND DYNAMIC STRESS CONCENTRATIONS IN MINDLIN'S THICK PLATES WITH A CUTOUT 被引量:16
19
作者 刘殿魁 胡超 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第2期169-185,共17页
Using the complex variable method and conformal mapping,scat- tering of flexural waves and dynamic stress concentrations in Mindlin's thick plates with a cutout have been studied.The general solution of the stress... Using the complex variable method and conformal mapping,scat- tering of flexural waves and dynamic stress concentrations in Mindlin's thick plates with a cutout have been studied.The general solution of the stress problem of the thick plate satisfying the boundary conditions on the contour of cutouts is obtained. Applying the orthogonal function expansion technique,the dynamic stress problem can be reduced into the solution of a set of infinite algebraic equations.As examples, numerical results for the dynamic stress concentration factor in Mindlin's plates with a circular,elliptic cutout are graphically presented in sequence. 展开更多
关键词 Mindlin's thick plate scattering of flexural waves dynamic stress concentration complex variable method
下载PDF
Rapid repair techniques for severely earthquake-damaged circular bridge piers with flexural failure mode 被引量:9
20
作者 Sun Zhiguo Li Hongnan +2 位作者 Bi Kaiming Si Bingjun Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期415-433,共19页
In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled ci... In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode. 展开更多
关键词 rapid repair severely earthquake-damaged circular bridge piers flexural failure mode CFRP early-strengthconcrete
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部