期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于改进YOLOv7的棉田虫害检测 被引量:1
1
作者 孙俊 贾忆琳 +3 位作者 吴兆祺 周鑫 沈继锋 武小红 《农业工程学报》 EI CAS CSCD 北大核心 2024年第10期176-184,共9页
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络... 棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。 展开更多
关键词 模型 图像处理 棉田虫害 YOLOv7 注意力机制 Slim-Neck focal-eiou
下载PDF
一种改进YOLOv5s的森林火灾烟雾检测算法
2
作者 张立国 张琦 +2 位作者 金梅 袁煜淋 王泓沣 《计量学报》 CSCD 北大核心 2024年第9期1314-1323,共10页
提出一种基于改进YOLOv5s的森林火灾烟雾检测算法。构建包含16573幅图片的火焰烟雾数据集,解决训练数据不足的问题,提高训练模型的泛化能力。设计一种轻量化的GC-C3模块替换原有的C3模块,减少模型参数量和计算量;将加权双向特征金字塔... 提出一种基于改进YOLOv5s的森林火灾烟雾检测算法。构建包含16573幅图片的火焰烟雾数据集,解决训练数据不足的问题,提高训练模型的泛化能力。设计一种轻量化的GC-C3模块替换原有的C3模块,减少模型参数量和计算量;将加权双向特征金字塔网络结构融合到Neck结构中,增强网络对于中小目标的检测能力;修改网络空间金字塔池化结构,使用SimSPPF结构替换SPPF,提高了网络的计算效率和检测准确度;将边界框回归损失函数CIOU替换为Focal-EIOU,加快模型的收敛速度,解决正负样本不匹配的问题。实验结果表明:改进之后的网络平均检测准确度提高2.3%,模型参数数量下降46.7%,模型计算量下降47.5%。 展开更多
关键词 机器视觉 火灾烟雾检测 深度学习 YOLOv5s 轻量化 小目标检测 focal-eiou
下载PDF
基于改进YOLOv5的溺水人员检测
3
作者 刘向举 帅韬 蒋社想 《陕西理工大学学报(自然科学版)》 2024年第3期35-43,共9页
针对情况复杂而无法实现人员全天全面监管的场所,在实时检测人员防溺水方面存在困难的问题,提出了一种融合统一注意力机制动态头的YOLOv5-Dy-GBCA模型。首先,通过在YOLOv5的Head前引入动态检测头(DyHead),增强头部感知目标的空间位置、... 针对情况复杂而无法实现人员全天全面监管的场所,在实时检测人员防溺水方面存在困难的问题,提出了一种融合统一注意力机制动态头的YOLOv5-Dy-GBCA模型。首先,通过在YOLOv5的Head前引入动态检测头(DyHead),增强头部感知目标的空间位置、尺度和检测任务的能力;其次,将Backbone中的C3模块替换成由GhostBottleneck结构和坐标注意力模块(CA)构成的幻影坐标注意力特征提取模块(GBCA),有效改善了因水上人员相互遮挡、人体在水面浮现体积较少而造成输入的特征语义信息不丰富,特征信息提取不足的问题;然后,引入加权双向特征金字塔网络(BiFPN),增强模型在不同尺度上的特征融合能力;最后,采用Focal-EIoU损失函数,改善难易样本不平衡对检测结果的影响。实验结果表明,YOLOv5-Dy-GBCA模型在维持了原模型检测速度的同时,取得了91.50%的平均精度(mAP),相较于传统算法和其他主流算法检测效果更优。 展开更多
关键词 目标检测 防溺水 DyHead 注意力机制 focal-eiou
下载PDF
基于改进YOLOv5s的个人防护设备检测算法研究
4
作者 侯卫民 程婷婷 何孟玲 《长江信息通信》 2024年第6期81-84,共4页
由于施工现场环境复杂、遮挡物多,由无人机收集到的工人个人防护设备(包括安全帽、反光背心)图像具有目标小、检测难度大的特点,使用原YOLOv5s模型进行检测存在错检、漏检的问题。因此,文章提出了一种基于改进的YOLOv5s的个人防护设备... 由于施工现场环境复杂、遮挡物多,由无人机收集到的工人个人防护设备(包括安全帽、反光背心)图像具有目标小、检测难度大的特点,使用原YOLOv5s模型进行检测存在错检、漏检的问题。因此,文章提出了一种基于改进的YOLOv5s的个人防护设备检测算法,通过在YOLOv5s模型中引入动态稀疏注意力模块,使模型更关注有价值的区域,并对损失函数进行优化,将原YOLOv5s模型的CIoU损失函数替换为Focal-EIoU损失函数,减少损失函数的自由度提高模型的性能。实验采用无人机采集和网络检索获得的自建个人防护设备数据集来进行训练。实验结果表明,经过100次迭代训练后,改进算法对于个人防护设备检测的FPS提高了6.79%,mAP提高了9.59%。由此可见,文章所提出的改进算法有效降低了模型的误检率和漏检率,在个人防护设备的检测上表现出了良好的性能。 展开更多
关键词 个人防护设备检测 YOLOv5s 动态稀疏注意力模块 focal-eiou
下载PDF
改进YOLOv5-S的交通标志检测算法 被引量:3
5
作者 刘海斌 张友兵 +2 位作者 周奎 张宇丰 吕圣 《计算机工程与应用》 CSCD 北大核心 2024年第5期200-209,共10页
在自动驾驶领域,现有的交通标志检测方法在检测复杂背景中的标志时存在着漏检或误检的问题,降低了智能汽车的可靠性。对此,提出了一种改进YOLOv5-S的实时交通标志检测算法。在特征提取网络中融合坐标注意力机制,通过构建目标的长范围依... 在自动驾驶领域,现有的交通标志检测方法在检测复杂背景中的标志时存在着漏检或误检的问题,降低了智能汽车的可靠性。对此,提出了一种改进YOLOv5-S的实时交通标志检测算法。在特征提取网络中融合坐标注意力机制,通过构建目标的长范围依赖来捕获物体的位置感知,使得算法聚焦于重点的特征区域;引入Focal-EIoU损失函数来取代CIoU,使其更关注高质量的分类样本,提高对难分类样本的学习能力,减少漏检或者误检的问题;在网络中融合轻量级卷积技术GSConv,降低模型的计算量。增加新的小目标检测层,通过更丰富的特征信息提高小尺寸标志的检测效果。实验结果表明,改进方法的mAP@0.5和mAP@0.5:0.95分别为88.1%和68.5%,检测速度达到了83 FPS,能够满足实时可靠的检测需求。 展开更多
关键词 交通标志检测 YOLOv5 坐标注意机制 focal-eiou GSConv
下载PDF
改进的YOLOv8n在复杂环境下的车辆识别算法
6
作者 张张详 陈宁 《浙江科技大学学报》 CAS 2024年第5期404-416,共13页
【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改... 【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改进加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),以增强在昏暗光线下的车辆检测性能及对多尺度图像的处理能力,特别是对远处或部分遮挡的车辆;其次在主干网络引入可变型卷积(deformable convolutional networks,DCN),以增强模型对不同尺寸车辆的适应性;最后使用精确边界框回归的高效交并比损失函数(focal and efficient intersection over union loss,Focal-EIOU loss)替换高效交并比(efficient intersection over union,EIOU),进一步提升模型的稳定性。【结果】DB-YOLOv8n在自制车辆数据集上相比YOLOv8n,平均精度、精度和召回率分别提高了3.2%、3%和2%。【结论】本研究结果能为提高车辆检测的精确度提供理论参考。 展开更多
关键词 车辆检测 ECA通道注意力 可变形卷积网络 加权双向特征金字塔 focal-eiou loss
下载PDF
基于改进YOLOv5的手机外观缺陷检测算法 被引量:1
7
作者 潘金晶 曾成 +1 位作者 张晶 耿雪娜 《黑龙江科学》 2024年第8期39-43,共5页
提出一种手机外观缺陷检测的改进算法YOLOv5-CBE。该算法在YOLOv5框架的基础上,在主干网络的C3模块中加入坐标注意力(coordinate attention, CA)机制,可同时考虑通道间的关系和位置信息,使模型更准确地定位并识别到目标区域。借鉴加权... 提出一种手机外观缺陷检测的改进算法YOLOv5-CBE。该算法在YOLOv5框架的基础上,在主干网络的C3模块中加入坐标注意力(coordinate attention, CA)机制,可同时考虑通道间的关系和位置信息,使模型更准确地定位并识别到目标区域。借鉴加权双向特征金字塔网络(Bidirectional feature pyramid network, BiFPN)的思想,将Neck部分的concat模块替换为多尺度特征融合结构,使不同分辨率的特征更有效地融合。使用Focal-EIoU替代原模型中的边界框回归损失函数CIoU,使回归过程更专注于高质量的预测框,提高了定位精度。在工业相机成相的手机外观缺陷数据集上进行测试,结果表明,与YOLOv5模型相比,基于Focal-EIoU的YOLOv5模型召回率(recall)和平均精度均值(mAP50)分别提升了4.7%、1.9%;改进算法的精确率(precision)、召回率(recall)、平均精度均值(mean average precision, mAP50)均有明显提升,分别提升了1.2%、5.6%、5.3%。 展开更多
关键词 缺陷检测 坐标注意力 多尺度特征融合 focal-eiou YOLOv5
下载PDF
基于改进YOLOv5的菌落计数算法研究
8
作者 樊翔宇 代琦 《软件工程》 2024年第10期34-38,共5页
针对菌落计数问题,人工计数方法存在效率低、精度不高的问题。为了解决这些问题,提出了一种改进YOLOv5的模型,即YOLOES。该模型通过添加小目标检测层,并将Kmeans算法替换为Kmeans++算法,以更好地适应不同尺寸的目标;同时,采用Focal-EIo... 针对菌落计数问题,人工计数方法存在效率低、精度不高的问题。为了解决这些问题,提出了一种改进YOLOv5的模型,即YOLOES。该模型通过添加小目标检测层,并将Kmeans算法替换为Kmeans++算法,以更好地适应不同尺寸的目标;同时,采用Focal-EIoU损失函数解决难易样本的问题,引入了SPPCSPS(Spatial Pyramid Pooling Convolutional Spatial Pyramid Convolution)模块以增强特征表示能力,并在特征提取阶段引入了置换注意力机制。通过在大肠杆菌菌落数据集进行实验验证,结果显示相较于初始的YOLOv5模型,YOLOES的mAP@0.5提升了17.3百分点,表明YOLOES在菌落检测任务上具有更优越的性能。 展开更多
关键词 YOLOv5 图像识别 Kmeans++ focal-eiou SPPCSPS 置换注意力机制
下载PDF
基于YOLOv7-Tiny的车牌及放大号检测研究
9
作者 陈冠宇 尚雅层 《价值工程》 2024年第7期104-106,共3页
由于大型车辆的后车牌容易污损和遮挡,目前车牌号的识别对于这种情况有明显缺陷。提出将车牌放大号和车牌共同检测后再识别,提升车牌识别算法的适用性。本文基于YOLOv7-Tiny检测,算法先后采用更换主干网络和卷积模块实现模型轻量化,通... 由于大型车辆的后车牌容易污损和遮挡,目前车牌号的识别对于这种情况有明显缺陷。提出将车牌放大号和车牌共同检测后再识别,提升车牌识别算法的适用性。本文基于YOLOv7-Tiny检测,算法先后采用更换主干网络和卷积模块实现模型轻量化,通过改进损失函数来提升精度。实验表明,在YOLOv7-Tiny更换Mobilenetv3主干网络、GSConv卷积核和Focal-EIoU后,实现模型体积下降35%,参数量下降37%,运算量下降58%,从而实现一种轻量化的模型。 展开更多
关键词 放大号 YOLOv7-Tiny Mobilenetv3 GSConv focal-eiou
下载PDF
基于YOLOv5s模型的边界框回归损失函数研究
10
作者 董恒祥 潘江如 +2 位作者 董芙楠 赵晴 郭鸿鑫 《现代电子技术》 北大核心 2024年第3期179-186,共8页
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率... 针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。 展开更多
关键词 车辆检测 边界框回归损失函数 目标尺度 YOLOv5s CIoU SIoU focal-eiou WIoU
下载PDF
基于YOLO v5l-Im的排水管道缺陷检测方法及效果分析
11
作者 王俊岭 王晨晨 熊玉华 《科学技术与工程》 北大核心 2024年第18期7833-7842,共10页
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo... 针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。 展开更多
关键词 排水管道缺陷检测 YOLO v5l focal-eiou损失函数 BiFPN特征网络 CA注意力模块 融合检测
下载PDF
Infrared Fault Detection Method for Dense Electrolytic Bath Polar Plate Based on YOLOv5s
12
作者 Huiling Yu Yanqiu Hang +2 位作者 Shen Shi Kangning Wu Yizhuo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4859-4874,共16页
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr... Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste. 展开更多
关键词 Infrared polar plate fault detection YOLOv5 Real-ESRGAN Marr boundary detection operator focal-eiou loss
下载PDF
Improved YOLOv5-Based Inland River Floating Garbage Detection Model
13
作者 HU Wen-hao SI Zhan-jun +1 位作者 SHI Jin-yu YANG Ke 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期195-204,共10页
Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditi... Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditional cleanup methods and the challenges in detecting small targets,an improved YOLOv5 object detection model was proposed in this study.In order to enhance the model’s sensitivity to small targets and mitigate the impact of redundant information on detection performance,a bi-level routing attention mechanism was introduced and embedded into the backbone network.Additionally,a multi-scale detection head was incorporated into the model,allowing for more comprehensive coverage of floating garbage of various sizes through multi-scale feature extraction and detection.The Focal-EIoU loss function was also employed to optimize the model parameters,improving localization accuracy.Experimental results on the publicly available FloW_Img dataset demonstrated that the improved YOLOv5 model outperforms the original YOLOv5 model in terms of precision and recall,achieving a mAP(mean average precision)of 86.12%,with significant improvements and faster convergence. 展开更多
关键词 Floatinggarbage YOLOv5 Attentionmechanism Multi-scale detection head focal-eiou
下载PDF
基于改进YOLOv5的海洋目标检测方法研究
14
作者 孟慧娟 杨清 《信息技术》 2024年第11期98-104,共7页
针对海洋生物检测中存在的目标被遮蔽或半隐蔽等问题,提出一种适应于水下目标检测的网络WN-A-YOLOv5。在训练改进的模型之前,结合水下增强轻量级网络算法对原图像进行预处理,有助于在复杂的海洋环境下准确识别目标。文中在改进YOLOv5算... 针对海洋生物检测中存在的目标被遮蔽或半隐蔽等问题,提出一种适应于水下目标检测的网络WN-A-YOLOv5。在训练改进的模型之前,结合水下增强轻量级网络算法对原图像进行预处理,有助于在复杂的海洋环境下准确识别目标。文中在改进YOLOv5算法时,首先,引入Swin-Transformer主干模块,以提高模型的泛化能力;其次,在head预测部分使用EMA结构以及在主干中引入GAM注意力机制,以提高模型的鲁棒性;最后,引入Focal-EIOU Loss,用于精确边界框回归的高效损失。结果表明,经过改进训练的算法mAP为88.59%,实际检测视频帧率可达38.86,有效地提高了海洋目标检测精度。 展开更多
关键词 WN-A-YOLOv5 GAM focal-eiou Loss 深度学习 UWCNN
下载PDF
改进的YOLOv4头盔佩戴目标检测研究
15
作者 余晨晨 《沈阳工程学院学报(自然科学版)》 2024年第1期75-81,共7页
针对骑手在骑行时是否佩戴头盔对交通安全的影响问题,提出了一种改进的YOLOv4算法,能够更准确地识别和检测骑手是否佩戴头盔,从而为骑手提供安全保障。首先,选择轻量级网络MobileNetv1作为主干特征网络,并将YOLOv4网络中尺寸为3×3... 针对骑手在骑行时是否佩戴头盔对交通安全的影响问题,提出了一种改进的YOLOv4算法,能够更准确地识别和检测骑手是否佩戴头盔,从而为骑手提供安全保障。首先,选择轻量级网络MobileNetv1作为主干特征网络,并将YOLOv4网络中尺寸为3×3、步长为1的标准卷积层均替换为深度可分离卷积,减少模型计算量的同时提升检测速度;其次,引入ECA注意力机制,关注重点特征并抑制非必要特征,增加特征网络表现力;最后,引入改进的损失函数Focal-EIOU,改善常见的样本不均衡问题。实验结果表明:改进的YOLOv4算法生成的模型权重大小为48.43 M,是YOLOv4算法权重大小的19.3%,检测速度由33.40帧/秒提升至50.40帧/秒,mAP值为95.56%,在满足精确性的前提下更有利于轻量化部署。 展开更多
关键词 YOLOv4 目标检测 MobileNetv1 ECA注意力机制 focal-eiou
下载PDF
基于改进YOLOv8s的交通标志检测算法
16
作者 张京淇 李超 李晓磊 《电脑知识与技术》 2024年第30期31-34,共4页
针对当前道路交通标志识别中遇到的众多环境干扰因素以及小目标比例较高的难题,提出了一种基于YOLOv8s改进的目标检测算法。该算法采用感受野卷积替代骨干网络中的普通卷积,这一改进显著提升了模型对目标物体的关注度。同时,修改了原算... 针对当前道路交通标志识别中遇到的众多环境干扰因素以及小目标比例较高的难题,提出了一种基于YOLOv8s改进的目标检测算法。该算法采用感受野卷积替代骨干网络中的普通卷积,这一改进显著提升了模型对目标物体的关注度。同时,修改了原算法的空间金字塔池化模块,使其能够对输入特征图进行多尺度的空间金字塔池化,从而增强特征的表达能力。此外,使用Focal-EIOU损失函数实现了更为精确的边界框回归。在CCTSDB数据集上的验证结果显示,mAP@0.5与mAP@0.5:0.95两个指标分别提升了1.6%和1.3%。 展开更多
关键词 交通标志检测 YOLOv8 感受野卷积 空间金字塔池化 focal-eiou
下载PDF
基于改进YOLOv5的织物缺陷检测
17
作者 陈淼 张胜利 季坚莞 《毛纺科技》 CAS 北大核心 2024年第1期99-106,共8页
鉴于织物表面纹理复杂导致织物缺陷检测准确率低以及小目标检测困难等问题,提出一种基于改进YOLOv5的织物缺陷检测算法。首先,在YOLOv5的骨干网络上,增加CBAM注意力机制,从而强化有用的特征信息弱化无用的特征信息;其次,将Neck层的路径... 鉴于织物表面纹理复杂导致织物缺陷检测准确率低以及小目标检测困难等问题,提出一种基于改进YOLOv5的织物缺陷检测算法。首先,在YOLOv5的骨干网络上,增加CBAM注意力机制,从而强化有用的特征信息弱化无用的特征信息;其次,将Neck层的路径聚合网络(PANet)用加权双向特征金字塔网络(Bi-FPN)替换,从而更好地平衡多尺度特征信息,提高小目标检测的特征能力。最后,通过改进损失函数,使用Focal EIOU Loss损失函数来代替CIOU Loss损失函数,不仅使得收敛速度更快,而且可以有效的解决难易样本不平衡问题。实践证明:改进后的训练模型平均精度均值mAP值为84.5%,比未改进增加了4.7%,可满足实际生产中的织物缺陷检测要求。 展开更多
关键词 YOLOv5 缺陷检测 注意力机制 加权双向特征金字塔 Focal EIOU Loss
下载PDF
YOLOv5-CCE:一种基于CA和EIoU的目标检测算法
18
作者 王军 黄博文 蔡景贵 《火力与指挥控制》 CSCD 北大核心 2024年第9期90-96,103,共8页
为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特... 为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特征的提取能力;其次为提高回归精度,提出一种基于Focal EIoU Loss改进的Focal CEIoU Loss。实验结果表明,在PASCAL VOC 2007+2012数据集上,YOLOv5-CCE模型在参数量和计算量基本保持不变的情况下,相较于原模型mAP@0.5、mAP@0.5:0.95和准确率分别提升了1.4%、1.3%和3.7%,因此,YOLOv5-CCE模型可以更好地适应复杂环境下的目标检测任务。 展开更多
关键词 YOLOv5算法 EIoU Focal Loss CA注意力机制 目标检测
下载PDF
基于改进YOLOv7的织物疵点检测算法 被引量:3
19
作者 毋涛 崔青 +2 位作者 殷强 邓魏永 梁芷 《纺织高校基础科学学报》 CAS 2023年第4期29-36,共8页
针对织物疵点检测方式大多为人工操作且检测耗时、背景复杂、所含疵点种类繁多等问题,提出一种改进YOLOv7算法的轻量级检测方法。首先,在主干和颈部引入FasterNet结构,在保证检测精度的同时又降低网络参数量;其次,为减少位置信息丢失,... 针对织物疵点检测方式大多为人工操作且检测耗时、背景复杂、所含疵点种类繁多等问题,提出一种改进YOLOv7算法的轻量级检测方法。首先,在主干和颈部引入FasterNet结构,在保证检测精度的同时又降低网络参数量;其次,为减少位置信息丢失,在特征提取阶段引入CA注意力模块,以提高网络的表达能力;最后,引入新的损失函数Focal-EIoU,将Focal与EIoU相结合,提高疵点的分类和定位精度。通过对构建的含有6种疵点的面料数据集进行测试可以看出,相比于原算法,所提算法计算量GFLOPS降低至38.6,参数量降低6.14×10^(6),平均精度均值提高4.6%,漏检率降低5.5%,帧率达到63.2帧/s。 展开更多
关键词 YOLOv7 织物疵点检测 FasterNet 注意力机制 focal-eiou
下载PDF
基于YOLOv5s的密集多人脸检测算法 被引量:4
20
作者 董子平 陈世国 廖国清 《计算机工程与科学》 CSCD 北大核心 2023年第10期1838-1846,共9页
针对在密集场景下多人脸检测容易漏检,小尺度人脸检测率不高的问题,提出了基于YOLOv5s改进的多人脸检测算法IYOLOv5s-MF。首先,在特征融合部分引入FTT模块,以获取小尺度人脸更多的特征表征;然后,改进正负样本采样策略,通过增加有效正样... 针对在密集场景下多人脸检测容易漏检,小尺度人脸检测率不高的问题,提出了基于YOLOv5s改进的多人脸检测算法IYOLOv5s-MF。首先,在特征融合部分引入FTT模块,以获取小尺度人脸更多的特征表征;然后,改进正负样本采样策略,通过增加有效正样本,增强算法的模型泛化能力;最后,将Focal-EIoU作为定位损失函数,在加速模型收敛的同时提升人脸检测率。在WIDER FACE数据集上进行人脸检测实验,实验结果表明,相比较其他对比算法,IYOLOv5s-MF算法拥有较高的人脸检测精度,且具有较好的实时性能。 展开更多
关键词 人脸检测 YOLOv5s 特征融合 focal-eiou
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部