CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met...CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.展开更多
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet...CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.展开更多
Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate...Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate remains a challenge.In this article,the ZnIn-E_(12) catalyst is successfully prepared by solvent assisted ligand exchange(SALE) method to convert organic ligands,achieving a Faradaic efficiency of 72.28% for formate at-1.26 V vs.RHE(V_(RHE)),which is 1.42 times higher than the original catalyst.Evidence shows that the successful conversion of organic ligands can transform the catalyst from the original large size polyhedron to cross-linked network of particles with a diameter of about 30 nm.The increased specific surface area can expose more active sites and facilitate the electrocatalytic conversion of CO_(2) to formate.This work is expected to provide inspiration for the regulation of formate selectivity and catalyst size in Zn-based catalysts.展开更多
The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces c...The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts.展开更多
Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their po...Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their potential in promoting CO_(2)reduction reaction(CO_(2)RR),however,their low phase stability has limited their application perspective.Herein,we present a reduced graphene oxide(rGO)wrapped CsPbI_3 perovskite nanocrystal(NC)CO_(2)RR catalyst(CsPbI_3/rGO),demonstrating enhanced stability in the aqueous electrolyte.The CsPbI_3/rGO catalyst exhibited>92%Faradaic efficiency toward formate production at a CO_(2)RR current density of~12.7 mA cm^(-2).Comprehensive characterizations revealed the superior performance of the CsPbI_3/rGO catalyst originated from the synergistic effects between the CsPbI_3 NCs and rGO,i.e.,rGO stabilized theα-CsPbI_3 phase and tuned the charge distribution,thus lowered the energy barrier for the protonation process and the formation of~*HCOO intermediate,which resulted in high CO_(2)RR selectivity toward formate.This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO_(2)RR toward valuable fuels.展开更多
Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structur...Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structure(CuO/CuBi_(2)O_(4))and exhibited a high formate faradaic efficiency of 98.07%at–0.98 V and a large current density of–56.12 mA.cm^(-2)at–1.28 V,which is twice as high as Bi2O3catalyst.Especially,high selectivity(FE^(–)_(HCOO)>85%)is maintained over a wide potential window of 500 mV.In-situ Raman measurements and structure characterization revealed that the reduced Cu1Bi1bimetallic catalyst possesses abundant Cu-Bi interfaces and residual Bi-O structures.The abundant Cu-Bi interface structures on the catalyst surface can provide abundant active sites for CO_(2)RR,while the Bi-O structures may stabilize the CO_(2)^(*–)intermediate.The synergistic effect of abundant Cu-Bi interfaces and Bi-O species promotes the efficient synthesis of formate by following the OCHO^(*)pathway.展开更多
Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity ...Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity at high current density is important for formate production,but remains challenging.Herein,the BiIn hybrid electrocatalyst,deriving from the Bi2O3/In2O3heterojunction(MOD-Biln),shows excellent catalytic performance for CO_(2)RR.The Faradaic efficiency of formate(FEHCOO-) can be realized over 90% at a wide potential window from-0.4 to-1.4 V vs.RHE,while the partial current density of formate(jHCOO-) reaches about 136.7 mA cm^(-2)at-1.4 V in flow cell without IR-compensation.In additio n,the MOD-Biln exhibits superior stability with high selectivity of formate at 100 mA cm^(-2).Systematic characterizations prove the optimized catalytic sites and interface charge transfer of MOD-Biln,while theoretical calculation confirms that the hybrid structure with dual Bi/In metal sites contribute to the optimal free energy of*H and*OCHO intermediates on MOD-Biln surface,thus accelerating the formation and desorption step of*HCOOH to final formate production.Our work provides a facile and useful strategy to develop highly-active and stable electrocatalysts for CO_(2)RR.展开更多
The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clos...The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clostridium ljungdahlii(ClFDH)adsorbed on electrodes displays clear characteristic voltammetric signals that can be assigned to the reduction and oxidation potential of the[4Fe-4S]^(2+/+)cluster under nonturnover conditions.Upon adding substrates,the signals transform into a specific redox center that engages in catalytic electron transport.ClFDH catalyzes rapid and efficient reversible interconversion between CO_(2) and formate in the presence of substrates.The turnover frequency of electrochemical CO_(2) reduction is determined as 1210 s^(-1) at 25℃ and pH 7.0,which can be further enhanced up to 1786 s^(-1) at 50℃.The Faradaic efficiency at−0.6 V(vs.standard hydrogen electrode)is recorded as 99.3%in a 2-h reaction.Inhibition experiments and theoretical modeling disclose interesting pathways for CO_(2) entry,formate exit,and OCN−competition,suggesting an oxidation-state-dependent binding mechanism of catalysis.Our results provide a different perspective for understanding the catalytic mechanism of FDH and original insights into the design of synthetic catalysts.展开更多
Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt...Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt BMLs reveal 2.93-fold enhancement in intrinsic electroactivity and 4.53-fold enhancement in mass electroactivity for the formate oxidation reaction(FOR)with respect to Pd metallenes(Pd MLs)at 0.50 V potential due to the synergistic effect.Meanwhile,the introduction of Pt atoms also considerably increases the electroactivity of PdPt BMLs for hydrogen evolution reaction(HER)with respect to Pd MLs in an alkaline medium,which even exceeds that with the use of commercial Pt nanocrystals.Inspired by the outstanding FOR and HER electroactivity of bifunctional PdPt BMLs,a two-electrode FOR-boosted WE system(FOR-WE)is constructed by using PdPt BMLs as the cathode and the anode.The FOR-WE system only requires an operational voltage of 0.31 V to achieve H2 production,which is 1.48 V lower than that(ca.1.79 V)with the use of the traditional WE system.展开更多
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,...Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions.展开更多
In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-...In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.展开更多
The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/for...The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR.展开更多
Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-val...Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.展开更多
The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. In...The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out.展开更多
Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorp...Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface can be obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated by taking acetate adsorption at Pt(lll) in acidic solution as an example. The possibility for extension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given.展开更多
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded forma...Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.展开更多
In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid F...In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid FS,aqueous formate solutions,and aqueous bicarbonate solutions set the limitations for storage capacity,deliverable capacity,and usable H2capacity of these H2carriers,respectively.These parameters will help in the design of systems that use H2carriers for storage and transport of H2for fuel cell power applications.FS,as well as admixtures with formic acid(FA,H2CO2),have potential to address the goals outlined in the U.S.Department of Energy’s H2@scale initiative to store in chemical bonds a significant quantity of energy(hundreds of megawatts)obtained from large scale renewable resources.展开更多
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The...Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.展开更多
Pressure-assisted sinter bonding was performed in air at 250−350℃ using a preform comprising copper formate particles to form a bondline that is sustainable at high temperatures.H2 and CO generated concurrently by th...Pressure-assisted sinter bonding was performed in air at 250−350℃ using a preform comprising copper formate particles to form a bondline that is sustainable at high temperatures.H2 and CO generated concurrently by the pyrolysis of copper formate at 210℃ during the sinter bonding removed the native oxide and other oxides grown on bulk Cu finishes,enabling interface bonding.Moreover,Cu produced in situ by the reduction of Cu(II)accelerated the sinter bonding.Consequently,the bonding achieved at 300−350℃ under 5 MPa exhibited sufficient shear strength of 20.0−31.5 MPa after 180−300 min of sinter bonding.In addition,an increase in pressure to 10 MPa resulted in shear strength of 21.9 MPa after an extremely short time of 30 s at 250℃,and a near-full-density bondline was achieved after 300 s.The obtained results indicate the promising potential of the preform comprising copper formate particles for high-speed sinter bonding.展开更多
Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand ch...Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand challenge.Herein,a novel Ni nanoparticles-anchored CNT coated by mesoporous carbon with yolk-shell structure (CNT/Ni@mC) catalysis was designed for CO_(2)ER.Ni nanoparticles were confined in the cavity between CNT and mesoporous carbon shell and the confined space can be controlled by tuning the amount of silica precursor.The mesoporous carbon shell and confined space are beneficial to charge transmission during CO_(2)ER.In contrast to previous studies,the CNT/Ni@mC catalyst presents selectivity toward formate rather than CO.Electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy measurements indicate the presence of a COO* intermediate that converts to formate under CO_(2)ER conditions.The well-defined structural feature of the confined space of the Ni-based catalyst for selective CO_(2)ER to formate may facilitate in-depth mechanistic understandings on structural factors that affect CO_(2)ER performance.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22072110 and 21872107)the Key Research and Development Projects of Hubei Province,China(2022BAA083)。
文摘CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.
基金financially supported by the National Natural Science Foundation of China(52072409)the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010403)+1 种基金the Taishan Scholar Project(No.ts201712020)the Natural Science Foundation of Shandong Province(ZR2021QE062)
文摘CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.
基金financially supported by the National Natural Science Foundation of China(22072087)。
文摘Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate remains a challenge.In this article,the ZnIn-E_(12) catalyst is successfully prepared by solvent assisted ligand exchange(SALE) method to convert organic ligands,achieving a Faradaic efficiency of 72.28% for formate at-1.26 V vs.RHE(V_(RHE)),which is 1.42 times higher than the original catalyst.Evidence shows that the successful conversion of organic ligands can transform the catalyst from the original large size polyhedron to cross-linked network of particles with a diameter of about 30 nm.The increased specific surface area can expose more active sites and facilitate the electrocatalytic conversion of CO_(2) to formate.This work is expected to provide inspiration for the regulation of formate selectivity and catalyst size in Zn-based catalysts.
基金partial support from the Jiujiang Research Institute at Xiamen University.
文摘The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts.
基金financial support by Australian Research Council(ARC)supported by the generous funding from Science and Engineering faculty,QUT。
文摘Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their potential in promoting CO_(2)reduction reaction(CO_(2)RR),however,their low phase stability has limited their application perspective.Herein,we present a reduced graphene oxide(rGO)wrapped CsPbI_3 perovskite nanocrystal(NC)CO_(2)RR catalyst(CsPbI_3/rGO),demonstrating enhanced stability in the aqueous electrolyte.The CsPbI_3/rGO catalyst exhibited>92%Faradaic efficiency toward formate production at a CO_(2)RR current density of~12.7 mA cm^(-2).Comprehensive characterizations revealed the superior performance of the CsPbI_3/rGO catalyst originated from the synergistic effects between the CsPbI_3 NCs and rGO,i.e.,rGO stabilized theα-CsPbI_3 phase and tuned the charge distribution,thus lowered the energy barrier for the protonation process and the formation of~*HCOO intermediate,which resulted in high CO_(2)RR selectivity toward formate.This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO_(2)RR toward valuable fuels.
基金financially supported by the National Natural Science Foundation of China(22172082,21978137,and 21878162)the Natural Science Foundation of Tianjin(20JCZDJC00770)+1 种基金the NCC Fund(NCC2020FH05)the Fundamental Research Funds for the Central Universities。
文摘Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structure(CuO/CuBi_(2)O_(4))and exhibited a high formate faradaic efficiency of 98.07%at–0.98 V and a large current density of–56.12 mA.cm^(-2)at–1.28 V,which is twice as high as Bi2O3catalyst.Especially,high selectivity(FE^(–)_(HCOO)>85%)is maintained over a wide potential window of 500 mV.In-situ Raman measurements and structure characterization revealed that the reduced Cu1Bi1bimetallic catalyst possesses abundant Cu-Bi interfaces and residual Bi-O structures.The abundant Cu-Bi interface structures on the catalyst surface can provide abundant active sites for CO_(2)RR,while the Bi-O structures may stabilize the CO_(2)^(*–)intermediate.The synergistic effect of abundant Cu-Bi interfaces and Bi-O species promotes the efficient synthesis of formate by following the OCHO^(*)pathway.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 22205205)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos.LQ22B030008)the Science Foundation of Zhejiang Sci-Tech University (ZSTU)(Grant Nos. 21062337-Y and 22062312-Y)。
文摘Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity at high current density is important for formate production,but remains challenging.Herein,the BiIn hybrid electrocatalyst,deriving from the Bi2O3/In2O3heterojunction(MOD-Biln),shows excellent catalytic performance for CO_(2)RR.The Faradaic efficiency of formate(FEHCOO-) can be realized over 90% at a wide potential window from-0.4 to-1.4 V vs.RHE,while the partial current density of formate(jHCOO-) reaches about 136.7 mA cm^(-2)at-1.4 V in flow cell without IR-compensation.In additio n,the MOD-Biln exhibits superior stability with high selectivity of formate at 100 mA cm^(-2).Systematic characterizations prove the optimized catalytic sites and interface charge transfer of MOD-Biln,while theoretical calculation confirms that the hybrid structure with dual Bi/In metal sites contribute to the optimal free energy of*H and*OCHO intermediates on MOD-Biln surface,thus accelerating the formation and desorption step of*HCOOH to final formate production.Our work provides a facile and useful strategy to develop highly-active and stable electrocatalysts for CO_(2)RR.
基金support from the National Key Research and Development Program of China (No.2020YFA0907300)the National Natural Science Foundation of China (No.22077069)+1 种基金the Natural Science Foundation of Tianjin (19JCZDJC33400)the Fundamental Research Funds for the Central Universities,Nankai University (63201111).
文摘The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clostridium ljungdahlii(ClFDH)adsorbed on electrodes displays clear characteristic voltammetric signals that can be assigned to the reduction and oxidation potential of the[4Fe-4S]^(2+/+)cluster under nonturnover conditions.Upon adding substrates,the signals transform into a specific redox center that engages in catalytic electron transport.ClFDH catalyzes rapid and efficient reversible interconversion between CO_(2) and formate in the presence of substrates.The turnover frequency of electrochemical CO_(2) reduction is determined as 1210 s^(-1) at 25℃ and pH 7.0,which can be further enhanced up to 1786 s^(-1) at 50℃.The Faradaic efficiency at−0.6 V(vs.standard hydrogen electrode)is recorded as 99.3%in a 2-h reaction.Inhibition experiments and theoretical modeling disclose interesting pathways for CO_(2) entry,formate exit,and OCN−competition,suggesting an oxidation-state-dependent binding mechanism of catalysis.Our results provide a different perspective for understanding the catalytic mechanism of FDH and original insights into the design of synthetic catalysts.
基金the National Natural Science Foundation of China(22272103)the Shenzhen Stable Supporting Program(20220716001753001 and SZWD2021015)+3 种基金the University Engineering Research Center of Crystal Growth and Applications of Guangdong Province(2020GCZX005)the Science and Technology Innovation Team of Shaanxi Province(2023-CX-TD-27 and 2022TD-35)the Fundamental Research Funds for the Central Universities(GK202202001)the 111 Project(B14041).
文摘Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt BMLs reveal 2.93-fold enhancement in intrinsic electroactivity and 4.53-fold enhancement in mass electroactivity for the formate oxidation reaction(FOR)with respect to Pd metallenes(Pd MLs)at 0.50 V potential due to the synergistic effect.Meanwhile,the introduction of Pt atoms also considerably increases the electroactivity of PdPt BMLs for hydrogen evolution reaction(HER)with respect to Pd MLs in an alkaline medium,which even exceeds that with the use of commercial Pt nanocrystals.Inspired by the outstanding FOR and HER electroactivity of bifunctional PdPt BMLs,a two-electrode FOR-boosted WE system(FOR-WE)is constructed by using PdPt BMLs as the cathode and the anode.The FOR-WE system only requires an operational voltage of 0.31 V to achieve H2 production,which is 1.48 V lower than that(ca.1.79 V)with the use of the traditional WE system.
基金the financial support from the National Nature Science Foundation of China(22078232 and 21938008)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions.
基金Ariel UniversityIsrael National Research Center for Electrochemical PropulsionNew Technologies Research Centre,University of West Bohemia,Pilsen for financially supporting this research。
文摘In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.
基金support by the University of Southern Queensland(USQ)and Australian Research Council(ARC)Discovery Project DP190101782funded through Future Fellowship FT220100166 and Laureate Fellowship FL170100086 by the Australian Research Council(ARC).
文摘The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR.
基金supported by the Hainan Provincial Natural Science Foundation of China(222RC548)the National Natural Science Foun-dation of China(22109034,22109035,52164028,62105083,21805104)+3 种基金the Opening Project of Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(KFKT2021007)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20082,20083,20084,21065,21124,21125)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhys2022-174)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province.
文摘Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.
基金This work was supported by one hundred Tal- ents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21273215), 973 program from the Ministry of Sci- ence and Technology of China (No.2010CB923302).
文摘The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out.
基金This work was supported by one Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.20773116, No.21273215, and No.J1030412), and 973 Program from theMinistry of Science and Technology of China (No.2010CB923302). Many Thanks to Prof. Shen Ye from Hokkaido university for the help in establishing techniques for single crystalline electro- chemistry.
文摘Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface can be obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated by taking acetate adsorption at Pt(lll) in acidic solution as an example. The possibility for extension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given.
文摘Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.
基金support from the Hydrogen Materials-Advanced Research Consortium(HyMARC)supported by the National Research Foundation(NRF)of Korea grant funded by the Ministry of Science and ICT(2015M1A2A2074688)KIST institutional program funded by the Korea Institute of Science and Technology(2E29610)。
文摘In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid FS,aqueous formate solutions,and aqueous bicarbonate solutions set the limitations for storage capacity,deliverable capacity,and usable H2capacity of these H2carriers,respectively.These parameters will help in the design of systems that use H2carriers for storage and transport of H2for fuel cell power applications.FS,as well as admixtures with formic acid(FA,H2CO2),have potential to address the goals outlined in the U.S.Department of Energy’s H2@scale initiative to store in chemical bonds a significant quantity of energy(hundreds of megawatts)obtained from large scale renewable resources.
基金financially supported by Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-3)the National Key Research and Development Program of China (2016YFB0600901)the Instrument Developing Project of the Chinese Academy of Sciences
文摘Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.
基金supported by the Materials&Components Technology Development Program(10080187)funded by the Ministry of Trade,Industry&Energy(MI,Korea)。
文摘Pressure-assisted sinter bonding was performed in air at 250−350℃ using a preform comprising copper formate particles to form a bondline that is sustainable at high temperatures.H2 and CO generated concurrently by the pyrolysis of copper formate at 210℃ during the sinter bonding removed the native oxide and other oxides grown on bulk Cu finishes,enabling interface bonding.Moreover,Cu produced in situ by the reduction of Cu(II)accelerated the sinter bonding.Consequently,the bonding achieved at 300−350℃ under 5 MPa exhibited sufficient shear strength of 20.0−31.5 MPa after 180−300 min of sinter bonding.In addition,an increase in pressure to 10 MPa resulted in shear strength of 21.9 MPa after an extremely short time of 30 s at 250℃,and a near-full-density bondline was achieved after 300 s.The obtained results indicate the promising potential of the preform comprising copper formate particles for high-speed sinter bonding.
基金the Natural Science Foundation of Hebei(B02020208088,H_(2)020206514)the S&T Program of Hebei(20544401D,20314401D,206Z4406G,21314402D,B2021208074,21344601D)the Tianjin Science and Technology Project(19YFSLQY00070)。
文摘Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand challenge.Herein,a novel Ni nanoparticles-anchored CNT coated by mesoporous carbon with yolk-shell structure (CNT/Ni@mC) catalysis was designed for CO_(2)ER.Ni nanoparticles were confined in the cavity between CNT and mesoporous carbon shell and the confined space can be controlled by tuning the amount of silica precursor.The mesoporous carbon shell and confined space are beneficial to charge transmission during CO_(2)ER.In contrast to previous studies,the CNT/Ni@mC catalyst presents selectivity toward formate rather than CO.Electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy measurements indicate the presence of a COO* intermediate that converts to formate under CO_(2)ER conditions.The well-defined structural feature of the confined space of the Ni-based catalyst for selective CO_(2)ER to formate may facilitate in-depth mechanistic understandings on structural factors that affect CO_(2)ER performance.