Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structur...The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.展开更多
We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). Th...We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.展开更多
With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In thi...With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In this paper,a review of one of the most promising fault-tolerant topologies for semiconductor open-circuit fault,called four-switch three-phase(FSTP)topology,is presented in terms of modeling analysis,modulation techniques,and control strategies.The configuration of FSTP voltage source converter(VSC)is illustrated.To minimize the negative effects caused by the innate drawbacks of this fault-tolerant converter topology,considerable research has been carried out regarding modulation techniques and control strategies.The modulation principle for FSTP topology is explained in detail,since the performance of FSTP VSCs relies on it.This paper aims to illustrate current research progress on this fault-tolerant FSTP VSC topology.展开更多
开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要...开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要依靠外部给定来切换工作象限,在四象限运行工况下存在切换过程平滑性难以控制的问题。针对此,本文提出一种将SRM转速环控制系统及其四象限控制方法相结合,以传统的角度位置控制(Angle position control,APC)理论为基础,将转速调节器双极性输出量与电机转速方向进行逻辑判断形成新的APC控制参数,配合传统电流斩波控制(Chopping current control,CCC)形成新型的四象限转速环控制系统。该系统优化了SRM频繁电制动切换的顿挫问题,为电动车坡道动态行驶安全提供了平滑切换的保障。仿真和实验结果均验证了该系统原理的可行性,较好地实现了电动车SRM驱动系统的四象限工况切换。展开更多
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
文摘The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.
文摘We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.
文摘With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In this paper,a review of one of the most promising fault-tolerant topologies for semiconductor open-circuit fault,called four-switch three-phase(FSTP)topology,is presented in terms of modeling analysis,modulation techniques,and control strategies.The configuration of FSTP voltage source converter(VSC)is illustrated.To minimize the negative effects caused by the innate drawbacks of this fault-tolerant converter topology,considerable research has been carried out regarding modulation techniques and control strategies.The modulation principle for FSTP topology is explained in detail,since the performance of FSTP VSCs relies on it.This paper aims to illustrate current research progress on this fault-tolerant FSTP VSC topology.
文摘开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要依靠外部给定来切换工作象限,在四象限运行工况下存在切换过程平滑性难以控制的问题。针对此,本文提出一种将SRM转速环控制系统及其四象限控制方法相结合,以传统的角度位置控制(Angle position control,APC)理论为基础,将转速调节器双极性输出量与电机转速方向进行逻辑判断形成新的APC控制参数,配合传统电流斩波控制(Chopping current control,CCC)形成新型的四象限转速环控制系统。该系统优化了SRM频繁电制动切换的顿挫问题,为电动车坡道动态行驶安全提供了平滑切换的保障。仿真和实验结果均验证了该系统原理的可行性,较好地实现了电动车SRM驱动系统的四象限工况切换。