Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt...Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.展开更多
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple...In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.展开更多
Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of ...Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12072297 and12202370)the Natural Science Foundation of Sichuan Province of China(No.24NSFSC4777)。
文摘Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (10571053, 10871066, 10811120282)Programme for New Century Excellent Talents in University(NCET-06-0712)
文摘In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.
文摘Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.