为更全面提取转子故障特征,将全矢谱和复局部均值分解(Complex local mean decomposition,CLMD)相结合,提出二元的全矢包络技术——CLMD全矢包络技术。采用正交采样技术获取转子同一截面上互相垂直方向上的振动信号,并将其组成一个复数...为更全面提取转子故障特征,将全矢谱和复局部均值分解(Complex local mean decomposition,CLMD)相结合,提出二元的全矢包络技术——CLMD全矢包络技术。采用正交采样技术获取转子同一截面上互相垂直方向上的振动信号,并将其组成一个复数信号;运用CLMD将复数信号按能量从高到低的顺序依次分离出系列复乘积函数(Complex product function,CPF),并解调出CPF的复包络;由于故障特征主要在能量较高的CPF分量中,通过全矢谱技术融合前几阶CPF分量的包络信号,得到相应的全矢包络谱。仿真的调幅-调频信号分析结果表面,较之Hilbert解调,CLMD全矢包络技术可提取隐含的调频信息,而且不存在虚假的低频谱线。转子试验台模拟的基座松动信号、碰摩信号分析结果表明,较之单源信息的包络谱,CLMD全矢包络技术提取的谱线特征更清晰、全面,而且根据全矢包络谱可有效区分基座松动引起的碰摩和单一碰摩故障。展开更多
支持矢量数据描述(Support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。矢双谱方法是基于全矢谱信息融合的双谱分析方法,能够有效融合旋转机械的双通道信息,更加全面、准确地反映信号中...支持矢量数据描述(Support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。矢双谱方法是基于全矢谱信息融合的双谱分析方法,能够有效融合旋转机械的双通道信息,更加全面、准确地反映信号中所包含的非线性故障特征信息。为实现在缺乏故障样本的情况下,对设备故障进行有效的智能诊断,提出一种矢双谱和SVDD相结合的智能故障诊断方法。采用矢双谱对双通道信号进行处理并提取特征矢量,作为SVDD的输入参数,建立起分类模型即可对机器运行状态进行分类。将该方法应用于齿轮箱的故障诊断中,结果表明可有效提取齿轮箱信号的特征信息,提高SVDD在故障诊断中的准确度。展开更多
传统的单通道信号分析容易造成信息缺失和诊断结论不一致等问题,这些问题可由全矢谱分析技术来解决。动态支持向量数据描述算法是对传统支持向量数据描述的改进算法,它的分类边界随着被测样本数的不断增加而不断更新,具有自学习能力。...传统的单通道信号分析容易造成信息缺失和诊断结论不一致等问题,这些问题可由全矢谱分析技术来解决。动态支持向量数据描述算法是对传统支持向量数据描述的改进算法,它的分类边界随着被测样本数的不断增加而不断更新,具有自学习能力。将全矢谱分析技术与动态支持向量数据描述算法相结合而提出全矢谱动态支持向量数据描述(vector spectrum dynamic support vector data description,VSDSVDD)的故障诊断新方法。运用全矢谱技术对数据进行处理,并提取特征矢量,作为VSDSVDD的输入参数,建立起分类模型即可以对机器运行状态进行分类。实验表明,该方法具有很好的分类准确性。展开更多
文摘为更全面提取转子故障特征,将全矢谱和复局部均值分解(Complex local mean decomposition,CLMD)相结合,提出二元的全矢包络技术——CLMD全矢包络技术。采用正交采样技术获取转子同一截面上互相垂直方向上的振动信号,并将其组成一个复数信号;运用CLMD将复数信号按能量从高到低的顺序依次分离出系列复乘积函数(Complex product function,CPF),并解调出CPF的复包络;由于故障特征主要在能量较高的CPF分量中,通过全矢谱技术融合前几阶CPF分量的包络信号,得到相应的全矢包络谱。仿真的调幅-调频信号分析结果表面,较之Hilbert解调,CLMD全矢包络技术可提取隐含的调频信息,而且不存在虚假的低频谱线。转子试验台模拟的基座松动信号、碰摩信号分析结果表明,较之单源信息的包络谱,CLMD全矢包络技术提取的谱线特征更清晰、全面,而且根据全矢包络谱可有效区分基座松动引起的碰摩和单一碰摩故障。
文摘支持矢量数据描述(Support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。矢双谱方法是基于全矢谱信息融合的双谱分析方法,能够有效融合旋转机械的双通道信息,更加全面、准确地反映信号中所包含的非线性故障特征信息。为实现在缺乏故障样本的情况下,对设备故障进行有效的智能诊断,提出一种矢双谱和SVDD相结合的智能故障诊断方法。采用矢双谱对双通道信号进行处理并提取特征矢量,作为SVDD的输入参数,建立起分类模型即可对机器运行状态进行分类。将该方法应用于齿轮箱的故障诊断中,结果表明可有效提取齿轮箱信号的特征信息,提高SVDD在故障诊断中的准确度。
文摘传统的单通道信号分析容易造成信息缺失和诊断结论不一致等问题,这些问题可由全矢谱分析技术来解决。动态支持向量数据描述算法是对传统支持向量数据描述的改进算法,它的分类边界随着被测样本数的不断增加而不断更新,具有自学习能力。将全矢谱分析技术与动态支持向量数据描述算法相结合而提出全矢谱动态支持向量数据描述(vector spectrum dynamic support vector data description,VSDSVDD)的故障诊断新方法。运用全矢谱技术对数据进行处理,并提取特征矢量,作为VSDSVDD的输入参数,建立起分类模型即可以对机器运行状态进行分类。实验表明,该方法具有很好的分类准确性。