期刊文献+
共找到6,417篇文章
< 1 2 250 >
每页显示 20 50 100
Fake News Detection Based on Cross-Modal Message Aggregation and Gated Fusion Network
1
作者 Fangfang Shan Mengyao Liu +1 位作者 Menghan Zhang Zhenyu Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1521-1542,共22页
Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion... Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion and daily life.Compared to pure text content,multmodal content significantly increases the visibility and share ability of posts.This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection.To effectively address the critical challenge of accurately detecting fake news on social media,this paper proposes a fake news detection model based on crossmodal message aggregation and a gated fusion network(MAGF).MAGF first uses BERT to extract cumulative textual feature representations and word-level features,applies Faster Region-based ConvolutionalNeuralNetwork(Faster R-CNN)to obtain image objects,and leverages ResNet-50 and Visual Geometry Group-19(VGG-19)to obtain image region features and global features.The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation.The gated fusion network combines text and image region features to obtain adaptively aggregated features.The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to producemultimodal representations.Finally,these fused features are fed into a classifier for news categorization.Experiments were conducted on two public datasets,Twitter and Weibo.Results show that the proposed model achieves accuracy rates of 91.8%and 88.7%on the two datasets,respectively,significantly outperforming traditional unimodal and existing multimodal models. 展开更多
关键词 Fake news detection cross-modalmessage aggregation gate fusion network co-attention mechanism multi-modal representation
下载PDF
Fusion network for small target detection based on YOLO and attention mechanism
2
作者 XU Caie DONG Zhe +3 位作者 ZHONG Shengyun CHEN Yijiang PAN Sishun WU Mingyang 《Optoelectronics Letters》 EI 2024年第6期372-378,共7页
Target detection is an important task in computer vision research, and such an anomaly detection and the topic of small target detection task is more concerned. However, there are still some problems in this kind of r... Target detection is an important task in computer vision research, and such an anomaly detection and the topic of small target detection task is more concerned. However, there are still some problems in this kind of researches, such as small target detection in complex environments is susceptible to background interference and poor detection results. To solve these issues, this study proposes a method which introduces the attention mechanism into the you only look once(YOLO) network. In addition, the amateur-produced mask dataset was created and experiments were conducted. The results showed that the detection effect of the proposed mothed is much better. 展开更多
关键词 fusion network for small target detection based on YOLO and attention mechanism
原文传递
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
3
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural network Depthwise Dilated Separable Convolution Hierarchical Multi-Scale Feature fusion
下载PDF
Consistent and Specific Multi-View Functional Brain Networks Fusion for Autism Spectrum Disorder Diagnosis
4
作者 Chaojun Zhang Chengcheng Wang +1 位作者 Limei Zhang Yunling Ma 《Journal of Applied Mathematics and Physics》 2023年第7期1914-1929,共16页
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob... Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset. 展开更多
关键词 Functional Brain network fusion CONSISTENCY SPECIFICITY Autism Spectrum Disorder
下载PDF
基于T-Fusion的TFP3D人体行为识别算法
5
作者 曾明如 熊嘉豪 祝琴 《计算机集成制造系统》 EI CSCD 北大核心 2023年第12期4032-4039,共8页
针对当前人体行为识别算法中双流卷积神经网络时效性差、3D卷积神经网络参数多、算法的复杂度高等不足,提出了基于3D卷积网络和时空融合网络的时空融合伪3D卷积神经网络模型TFP3D。首先,使用3D卷积拆分减少3D卷积核带来的庞大参数量;其... 针对当前人体行为识别算法中双流卷积神经网络时效性差、3D卷积神经网络参数多、算法的复杂度高等不足,提出了基于3D卷积网络和时空融合网络的时空融合伪3D卷积神经网络模型TFP3D。首先,使用3D卷积拆分减少3D卷积核带来的庞大参数量;其次,增加时空融合模块T-Fusion,保证人体行为信息时空特征的有效传递;最后,使用Kinetics数据集对深层模型进行预训练,在保证准确率的前提下提升网络速率。在常见的人体行为识别数据集UCFl01上进行了大量的实验分析,并将识别的结果和当前流行的算法进行比较,结果证明所设计的TFP3D优于其他方法,平均识别率相比其他方法有较大的提高。 展开更多
关键词 TFP3D网络 时间融合网络 预训练 行为识别 深度学习
下载PDF
Seismic velocity inversion based on CNN-LSTM fusion deep neural network 被引量:6
6
作者 Cao Wei Guo Xue-Bao +4 位作者 Tian Feng Shi Ying Wang Wei-Hong Sun Hong-Ri Ke Xuan 《Applied Geophysics》 SCIE CSCD 2021年第4期499-514,593,共17页
Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-mi... Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on fi eld data can eff ectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the eff ectiveness and decent generalization capability of the proposed method. 展开更多
关键词 Velocity inversion CNN-LSTM fusion deep neural network weight initialization training strategy
下载PDF
Three-dimensional Fusion of Spaceborne and Ground Radar Reflectivity Data Using a Neural Network–Based Approach 被引量:5
7
作者 Leilei KOU Zhuihui WANG Fen XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第3期346-359,共14页
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relative... The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm. 展开更多
关键词 TRMM PR ground radar 3D fusion neural network
下载PDF
Uncertain information fusion with robust adaptive neural networks-fuzzy reasoning 被引量:2
8
作者 Zhang Yinan Sun Qingwei +2 位作者 Quan He Jin Yonggao Quan Taifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期495-501,共7页
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ... In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm. 展开更多
关键词 uncertain information information fusion neural networks fuzzy inference robust estimate.
下载PDF
Evolutionary dynamics analysis of complex network with fusion nodes and overlap edges 被引量:1
9
作者 YANG Yinghui LI Jianhua +2 位作者 SHEN Di NAN Mingli CUI Qiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期549-559,共11页
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi... Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc. 展开更多
关键词 complex network with fusion nodes and overlap edges(CNFNOEs) interlacing layered complex networks(ILCN) local world dynamic evolvement split saturation attraction factor
下载PDF
A Digital Evidence Fusion Method in Network Forensics Systems with Dempster-Shafer Theory 被引量:2
10
作者 TIAN Zhihong JIANG Wei +1 位作者 LI Yang DONG Lan 《China Communications》 SCIE CSCD 2014年第5期91-97,共7页
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se... Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators. 展开更多
关键词 network forensics security dempster-shafer theory digital evidence fusion
下载PDF
Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain 被引量:121
11
作者 QU Xiao-Bo YAN Jing-Wen +1 位作者 XIAO Hong-Zhi ZHU Zi-Qian 《自动化学报》 EI CSCD 北大核心 2008年第12期1508-1514,共7页
Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视... Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视觉启发外皮的神经网络并且由全球联合和神经原的脉搏同步描绘。它为图象处理被证明合适并且成功地在图象熔化采用。在这份报纸, NSCT 与 PCNN 被联系并且在图象熔化使用了充分利用他们的特征。在 NSCT 领域的空间频率是输入与大开火的时间在 NSCT 领域激发 PCNN 和系数作为熔化图象的系数被选择。试验性的结果证明建议算法超过典型基于小浪,基于 contourlet,基于 PCNN,并且 contourlet-PCNN-based 熔化算法以客观标准和视觉外观。 展开更多
关键词 图像融合算法 空间频率 脉冲耦合神经网络 变换域 自动化系统
下载PDF
Classification Fusion in Wireless Sensor Networks 被引量:3
12
作者 LIU Chun-Ting HUO Hong +2 位作者 FANG Tao LI De-Ren SHEN Xiao 《自动化学报》 EI CSCD 北大核心 2006年第6期947-955,共9页
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl... In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved. 展开更多
关键词 Wireless sensor networks classification fusion wavelet decomposition weighted k-nearest-neighbor Dempster-Shafer theory
下载PDF
Fault diagnosis method of hydraulic system based on fusion of neural network and D-S evidence theory 被引量:2
13
作者 LIU Bao-jie YANG Qing-wen WU Xiang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第4期368-374,共7页
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e... According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS. 展开更多
关键词 multi sensor information fusion fault diagnosis D-S evidence theory BP neural network
下载PDF
Neural Network Based Normalized Fusion Approaches for Optimized Multimodal Biometric Authentication Algorithm 被引量:2
14
作者 E. Sujatha A. Chilambuchelvan 《Circuits and Systems》 2016年第8期1199-1206,共8页
A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and fac... A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and face biometric traits. Normalized score level fusion approach is applied and optimized, encoded for matching decision. It is a multilevel wavelet, phase based fusion algorithm. This robust multimodal biometric algorithm increases the security level, accuracy, reduces memory size and equal error rate and eliminates unimodal biometric algorithm vulnerabilities. 展开更多
关键词 Multimodal Biometrics Score Level fusion Approach Neural network OPTIMIZATION
下载PDF
Robust Sequential Covariance Intersection Fusion Kalman Filtering over Multi-agent Sensor Networks with Measurement Delays and Uncertain Noise Variances 被引量:4
15
作者 QI Wen-Juan ZHANG Peng DENG Zi-Li 《自动化学报》 EI CSCD 北大核心 2014年第11期2632-2642,共11页
关键词 KALMAN滤波 传感器网络 测量不确定 噪声方差 网络延迟 多代理 卡尔曼滤波器 协方差
下载PDF
Fusion analysis of MH-Ni batteries characteristics by neural network data fusion method
16
作者 游林儒 张晋格 王炎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第1期69-73,共5页
Presents the fusion analysis of the charging and discharging characteristics of MH Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vect... Presents the fusion analysis of the charging and discharging characteristics of MH Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vector for selection of MH Ni batteries, and the comparison of two results of selection. 展开更多
关键词 BATTERY neural network data fusion
下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
17
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE fusion dual BAND pulse coupled NEURAL network(PCNN) FEATURE extraction
下载PDF
Gear Transmission Fault Classification using Deep Neural Networks and Classifier Level Sensor Fusion 被引量:6
18
作者 Min XIA Clarence W.DE SILVA 《Instrumentation》 2019年第2期101-109,共9页
Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working envir... Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working environment.This paper presents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks(CNNs)and decision-level sensor fusion.In the proposed approach,a CNN is first utilized to classify the faults of a gear transmission based on the acquired signals from each of the sensors.Raw sensory data is sent directly into the CNN models without manual feature extraction.Then,classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the CNN models.Experimental study is conducted,which shows the superior performance of the developed method in the classification of different gear transmission conditions in an automated industrial machine.The presented approach also achieves end-to-end learning that ean be applied to the fault elassification of a gear transmission under various operating eonditions and with signals from different types of sensors. 展开更多
关键词 FAULT Classification FAULT DIAGNOSIS Convolutional NEURAL networks GEAR Transmission DECISION fusion
下载PDF
支撑新型配电网数字化规划的图形⁃模型⁃数据融合关键技术 被引量:3
19
作者 余涛 王梓耀 +3 位作者 孙立明 曹华珍 吴亚雄 吴毓峰 《电力系统自动化》 EI CSCD 北大核心 2024年第6期139-153,共15页
配电网规划领域期盼实现智能规划,其愿景在于实现无人或少人干预的全自动规划。在数字化转型的背景下,新型配电网规划将面临图形多样化、场景碎片化、数据规模化三大挑战。文中从图形-模型-数据融合的角度提出三大关键技术:基于电气图... 配电网规划领域期盼实现智能规划,其愿景在于实现无人或少人干预的全自动规划。在数字化转型的背景下,新型配电网规划将面临图形多样化、场景碎片化、数据规模化三大挑战。文中从图形-模型-数据融合的角度提出三大关键技术:基于电气图纸识别和拓扑智能分析的图形-模型融合技术、基于知识驱动的负荷/新能源推演分析和智能决策的模型-数据融合技术、基于多模态数据融合和多时空数据联动的图形-数据融合技术,尝试打破理论研究与数字化工程的壁垒。最后,对未来新型配电网数字化规划的发展进行思考和展望,为实现“以机为主,人机协同”的大闭环模式提供借鉴。 展开更多
关键词 图形-模型-数据融合 配电网 数字化规划 知识驱动 图计算
下载PDF
Sensor Registration Based on Neural Network in Data Fusion
20
作者 窦丽华 张苗 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期31-35,共5页
The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here... The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here the measurements from radar are transformed from the polar coordinate system to the Cartesian coordinate through a BP neural network. With this approach, the systematic errors are removed as well as the coordinate is transformed. The efficiency of this method is demonstrated by simulation, and the result show that this approach could remove the systematic errors effectively and the DAR are closer to real position than DBR. 展开更多
关键词 data fusion: sensor registration BP neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部