The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, inc...The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.展开更多
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and...Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.展开更多
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood....Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs.展开更多
Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained wit...Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained with the aid of the Gell-Mann-Oakes-Renner formula, giving values close to those obtained by the Standard Model, the current quark’s volume at ordinary nuclear temperature being obtained as sum of theoretic apparent volumes of preonic kerneloids. The maximal densities of the current quarks: strange (s), charm (c), bottom (b), and top (t) resulted in the range (0.8 - 4.2) × 1018 kg/m3, as values which could be specific to possible quark stars, in concordance with previous results. By the preonic quark model of CGT, the possible structure of a quark star resulted from the intermediary transforming: Ne(2d+u)→s−¯+λ−and the forming of composite quarks with the structure: C−(λ−-s−¯-λ−) and C+(s−¯-λ−-s−¯), and of Sq-layers: C+C−C+ and C−C+C− which can form composite quarks: Hq±=(SqS¯qSq);(S¯qSqS¯q), corresponding to a constituent mass: M(Hq) = (12,642;12,711) MeV/c2, the forming of heavier quarks inside a quark star resulting as possible in the form: Dq = n3Cq, (n ≥ 3). The Tolman-Oppenheimer limit: MT=0.7M⊙for neutron stars can also be explained by the CGT’s quark model.展开更多
The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a ...The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a typical marine carbonate reservoir with natural fractures caused mainly by tectonic movements.According to outcrops,drill cores,image logging,and fluid inclusions,the fracture characteristics,types of natural fractures,and interactions of fractures are determined.In total,419 natural fractures in 493.2 m of cores from 7 wells are investigated,which are mainly shear and tensile fractures with a small number of weathering generated fractures.Meanwhile,the results of the stable isotope analysis of δ13C and δ18O,as well as the flow fluid inclusion data,reveal four tectonic periods of fractures with different occurrences.Based on the history of regional tectonic evolution,indicating one period of weathering fractures ascribable to stratal uplift and three periods of structural fractures related to the sequential tectonic movements of the Longmenshan fault belt.By analyzing the interaction relationships of fractures,three types of fracture interaction relationships are observed:cutting,restraining,and overlapping.The four stages fractures are chronologically assigned to(1)the early Indosinian N-S trending compression,(2)the late Indosinian NW-SE compression,(3)the middle Yanshanian NE-SE compression,and(4)the early Himalayan E-W compression.The influence of natural fractures on gas migration and well production in marine carbonates is discussed,and indicates that tectonic fractures could provide seepage channels for gas migration and accumulation from near or distant hydrocarbon source rocks into the Middle Triassic Leikoupo Formation.This study utilizes a pragmatic approach for understanding the fracture genesis mechanism in oil and gas field with multiperiod fractures.展开更多
Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
Tropical cyclone(TC)activities in the North Indian Ocean(NIO)peak in May during the pre-monsoon period,but the TC frequency shows obvious inter-annual variations.By conducting statistical analysis and dynamic diagnosi...Tropical cyclone(TC)activities in the North Indian Ocean(NIO)peak in May during the pre-monsoon period,but the TC frequency shows obvious inter-annual variations.By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016,the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper.Furthermore,the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated.The findings are as follows:1)there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May,with the key influencing area located in the southwestern Indian Ocean(SWIO);2)the anomalies of SST in SWIO(SWIO-SST)are closely related to a teleconnection pattern surrounding the Indian Ocean,which can significantly modulate the high-level divergence,mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO;3)the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years.展开更多
A previous preon scenario for the standard model particles, based on unbroken supersymmetry, is applied to the problem of matter-antimatter asymmetry. Attention is paid to the fact that the asymmetric hydrogen atom—l...A previous preon scenario for the standard model particles, based on unbroken supersymmetry, is applied to the problem of matter-antimatter asymmetry. Attention is paid to the fact that the asymmetric hydrogen atom—like all atoms—can be described in terms of symmetric preons. Preons are created in the early universe. The matter-antimatter asymmetry is caused by stochastic correlations in charge density fluctuations of preons and antipreons and by the subsequent preon combinatorial mechanism to form quarks and leptons, and finally the three lightest elements. A tentative gravitino mass estimate is given based on minimal interference with nucleosynthesis. With local supersymmetry the scenario can be extended to supergravity.展开更多
基金jointed supported by National Key Research and Development Program of China (Grant No. 2021YFC2901704)the National Natural Science Foundation of China (Grant No. 41930430)the State Key Laboratory of Lithospheric Evolution, IGGCAS (Grant No. SKL-Z201905)。
文摘The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
基金the financial support from the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0805)the postdoctoral project of Qinghai Institute of Salt Lakes(Grant No.E260DZ0401)+1 种基金the Kunlun Talent Project in Qinghai Province(Grant No.E340DZ0801)the Qinghai Provincial Department of Science and Technology Project(Grant No.2024-ZJ-722)。
文摘Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.
文摘Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs.
文摘Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained with the aid of the Gell-Mann-Oakes-Renner formula, giving values close to those obtained by the Standard Model, the current quark’s volume at ordinary nuclear temperature being obtained as sum of theoretic apparent volumes of preonic kerneloids. The maximal densities of the current quarks: strange (s), charm (c), bottom (b), and top (t) resulted in the range (0.8 - 4.2) × 1018 kg/m3, as values which could be specific to possible quark stars, in concordance with previous results. By the preonic quark model of CGT, the possible structure of a quark star resulted from the intermediary transforming: Ne(2d+u)→s−¯+λ−and the forming of composite quarks with the structure: C−(λ−-s−¯-λ−) and C+(s−¯-λ−-s−¯), and of Sq-layers: C+C−C+ and C−C+C− which can form composite quarks: Hq±=(SqS¯qSq);(S¯qSqS¯q), corresponding to a constituent mass: M(Hq) = (12,642;12,711) MeV/c2, the forming of heavier quarks inside a quark star resulting as possible in the form: Dq = n3Cq, (n ≥ 3). The Tolman-Oppenheimer limit: MT=0.7M⊙for neutron stars can also be explained by the CGT’s quark model.
基金The first,second,and fifth authors acknowledge the financial support provided by the National Natural Science Foundation of China(41672133)The second author also acknowledges the National Natural Science Foundation of China(4207021285).
文摘The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a typical marine carbonate reservoir with natural fractures caused mainly by tectonic movements.According to outcrops,drill cores,image logging,and fluid inclusions,the fracture characteristics,types of natural fractures,and interactions of fractures are determined.In total,419 natural fractures in 493.2 m of cores from 7 wells are investigated,which are mainly shear and tensile fractures with a small number of weathering generated fractures.Meanwhile,the results of the stable isotope analysis of δ13C and δ18O,as well as the flow fluid inclusion data,reveal four tectonic periods of fractures with different occurrences.Based on the history of regional tectonic evolution,indicating one period of weathering fractures ascribable to stratal uplift and three periods of structural fractures related to the sequential tectonic movements of the Longmenshan fault belt.By analyzing the interaction relationships of fractures,three types of fracture interaction relationships are observed:cutting,restraining,and overlapping.The four stages fractures are chronologically assigned to(1)the early Indosinian N-S trending compression,(2)the late Indosinian NW-SE compression,(3)the middle Yanshanian NE-SE compression,and(4)the early Himalayan E-W compression.The influence of natural fractures on gas migration and well production in marine carbonates is discussed,and indicates that tectonic fractures could provide seepage channels for gas migration and accumulation from near or distant hydrocarbon source rocks into the Middle Triassic Leikoupo Formation.This study utilizes a pragmatic approach for understanding the fracture genesis mechanism in oil and gas field with multiperiod fractures.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
基金National Natural Science Foundation of China(41965005,41790471,42075013)Key R&D Plan of Yunnan Province Science and Technology Department(202203AC100006)National Natural Science Foundation of Yunnan Province(202201AS070069)。
文摘Tropical cyclone(TC)activities in the North Indian Ocean(NIO)peak in May during the pre-monsoon period,but the TC frequency shows obvious inter-annual variations.By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016,the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper.Furthermore,the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated.The findings are as follows:1)there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May,with the key influencing area located in the southwestern Indian Ocean(SWIO);2)the anomalies of SST in SWIO(SWIO-SST)are closely related to a teleconnection pattern surrounding the Indian Ocean,which can significantly modulate the high-level divergence,mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO;3)the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years.
文摘A previous preon scenario for the standard model particles, based on unbroken supersymmetry, is applied to the problem of matter-antimatter asymmetry. Attention is paid to the fact that the asymmetric hydrogen atom—like all atoms—can be described in terms of symmetric preons. Preons are created in the early universe. The matter-antimatter asymmetry is caused by stochastic correlations in charge density fluctuations of preons and antipreons and by the subsequent preon combinatorial mechanism to form quarks and leptons, and finally the three lightest elements. A tentative gravitino mass estimate is given based on minimal interference with nucleosynthesis. With local supersymmetry the scenario can be extended to supergravity.