Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,...Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.展开更多
Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultiv...Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing.展开更多
Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,...Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.展开更多
In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cas...In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system.展开更多
This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutti...This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutting-edge fields of genomics and bioinformatics, the application of AI is propelling a deeper understanding of complex genetic mechanisms and the development of innovative therapeutic approaches. The precision of AI in genomic sequence analysis, coupled with breakthroughs in precise gene editing, such as AI-designed gene editors, significantly enhances our comprehension of gene functions and disease associations . Moreover, AI’s capabilities in disease prediction, assessing individual disease risks through genomic data analysis, provide robust support for personalized medicine. AI applications extend beyond gene identification, gene expression pattern prediction, and genomic structural variant analysis, encompassing key areas such as epigenetics, multi-omics data integration, genetic disease diagnosis, evolutionary genomics, and non-coding RNA function prediction. Despite challenges including data privacy, algorithm transparency, and bioethical issues, the future of AI is expected to continue revolutionizing genomics and bioinformatics, ushering in a new era of personalized medicine and precision treatments.展开更多
Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined ...Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions,thus limiting their ability to expand into novel environments.However,the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood.The Niviventer niviventer species complex(NNSC),consisting of highly abundant wild rats in Southeast Asia and China,offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related.In the present study,we combined ecological niche modeling with phylogenetic analysis,which suggested that sister species cannot be both widespread and dominant within the same geographical region.Moreover,by assessing heterozygosity,linkage disequilibrium decay,and Tajima's D analysis,we found that widespread species exhibited higher genetic diversity than narrow-range species.In addition,by exploring the“genomic islands of speciation”,we identified 13 genes in highly divergent regions that were shared by the two widespread species,distinguishing them from their narrow-range counterparts.Functional annotation analysis indicated that these genes are involved in nervous system development and regulation.The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.展开更多
Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is high...Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is higher among Asians and it shows various pathogenic factors.Patients of UTUC have a short lifespan,and most of them have shown invasive malignant tumors at the time of initial diagnosis.The treatment of most UTUC patients is limited to surgical resection,radiotherapy and chemotherapy in clinical.Due to its rarity,the studies on targeted therapy are rare.With the development of the targeted therapy and immunotherapy,genomics exploration that affects the prognosis of UTUC becomes particularly important.In this paper,we intend to review the differential expression,clinical significance and some special types of UTUC genomes through the UTUC genome.展开更多
Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extens...Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extensive research on the genus,Roscoea species remain poorly defined and relationships between these species are not well resolved.In this study,we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the"Chinese"clade of Roscoea and as DNA super barcodes for species discrimination.We found that Roscoea plastid genomes ranged in length from 163,063 to 163,796 bp,and encoded 113 genes,including 79 protein-coding genes,30 tRNA genes,four rRNA genes.In addition,expansion and contraction of the IR regions showed obvious infraspecifc conservatism and interspecific differentiation.Plastid phylogenomics revealed that species belonging to the"Chinese"clade of Roscoea can be divided into four distinct subclades.Furthermore,our analysis supported the independence of R.cautleoides var.pubescens,the recovery of Roscoea pubescens Z.Y.Zhu,and a close relationship between R.humeana and R.cautloides.When we used the plastid genome as a super barcode,we found that it possessed strong discriminatory power(90%)with high support values.Intergenic regions provided similar resolution,which was much better than that of protein-coding regions,hypervariable regions,and DNA universal barcodes.However,plastid genomes could not completely resolve Roscoea phylogeny or definitively discriminate species.These limitations are likely related to the complex history of Roscoea speciation,poorly defined species within the genus,and the maternal inheritance of plastid genomes.展开更多
Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abu...Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR) or "Cenoplasmics" is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.展开更多
The study of gene function in filamentous fungi is a field of research that has made great advances in very recent years. A number of transformation and gene manipulation strategies have been developed and applied to ...The study of gene function in filamentous fungi is a field of research that has made great advances in very recent years. A number of transformation and gene manipulation strategies have been developed and applied to a diverse and rapidly expanding list of economically important filamentous fungi and oomycetes. With the significant number of fungal genomes now sequenced or being sequenced, functional genomics promises to uncover a great deal of new information in coming years. This review discusses recent advances that have been made in examining gene function in filamentous fungi and describes the advantages and limitations of the different approaches.展开更多
Proso millet (Panicummiliaceum) has highwater use efficiency (WUE), a short growing-season, and is highly adapted to a semi-arid climate. Genomic resources for proso millet are very limited. Large numbers of DNA marke...Proso millet (Panicummiliaceum) has highwater use efficiency (WUE), a short growing-season, and is highly adapted to a semi-arid climate. Genomic resources for proso millet are very limited. Large numbers of DNA markers and other genomic tools in proso millet can readily be developed by using genomic resources in related grasses. The objectives of the present report were to 1) test and characterize switchgrass SSR markers for use in proso millet, and 2) elucidate repeat-motifs in proso millet based on new SSR marker analysis. A total of 548 SSR markers were tested on 8 proso millet genotypes. Out of these, 339 amplified SSR markers in proso millet. This showed that 62% of the switchgrass SSR markers were transferable to proso millet. Of these 339 markers, 254 were highly polymorphic among the 8 proso genotypes. The resolving power of these 254 polymorphic SSR markers ranged from 0.25-14.75 with an average of 2.71. The 254 polymorphic SSR markers amplified 984 alleles in the ranges of 50 bp to 1300 bp. The majority of the SSR markers (221 of 254) amplified dinucleotide repeats. Based on SSR marker analysis, AG/GA was the most abundant repeat-motifs in proso millet. Switchgrass genomic information seems to be the most useful for developing DNA markers in proso millet. Markers developed in this study will be helpful for linkage map construction, mapping agronomic traits and future molecular breeding efforts in proso millet.展开更多
Alfalfa(M. sativa L.) is a highly valuable forage crop, providing >58 Mt of hay, silage, and pasture each year in the United States. As alfalfa is an outcrossing autotetraploid crop,however, breeding for enhanced a...Alfalfa(M. sativa L.) is a highly valuable forage crop, providing >58 Mt of hay, silage, and pasture each year in the United States. As alfalfa is an outcrossing autotetraploid crop,however, breeding for enhanced agronomic traits is challenging and progress has historically not been rapid. Methods that make use of genotypic information and statistical models to generate a genomic estimated breeding value(GEBV) for each plant at a young age hold a great deal of promise to accelerate breeding gains. An emerging genomic breeding pipeline employs SNP chips or genotyping-by-sequencing(GBS) to identify SNP markers in a training population, followed by the use of a statistical model to find associations between the discovered SNPs and traits of interest, followed by genomic selection(GS), a breeding program utilizing the trained model to predict breeding values and making selections based on the estimated breeding value(EBV). Much work has been done in recent years in all of these areas, to generate marker sets and discover SNPs associated with desirable traits, and the application of these technologies in alfalfa breeding programs is under way. However, GBS/GWAS/GS is still a new breeding paradigm,and work is ongoing to evaluate different models, software, and methods for use in such programs. In this review, we look at the progress of alfalfa genomics over the past halfdecade, and review work comparing models and methods relevant to this new type of breeding strategy.展开更多
In the last decade,the focus of computational pathology research community has shifted from replicating the pathological examination for diagnosis done by pathologists to unlocking and discovering"sub-visual"...In the last decade,the focus of computational pathology research community has shifted from replicating the pathological examination for diagnosis done by pathologists to unlocking and discovering"sub-visual"prognostic image cues from the histopathological image.While we are getting more knowledge and experience in digital pathology,the emerging goal is to integrate other-omics or modalities that will contribute for building a better prognostic assay.In this paper,we provide a brief review of representative works that focus on integrating pathomics with radiomics and genomics for cancer prognosis.It includes:correlation of pathomics and genomics;fusion of pathomics and genomics;fusion of pathomics and radiomics.We also present challenges,potential opportunities,and avenues for future work.展开更多
The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets o...The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets of the genome have emerged in the fields of phylogenomics and evolutionary genomics. In this review, we summarize the applications, advantages and limitations of four NGS-based genome- partitioning approaches in plant phylogenomics: genome skimming, transcriptome sequencing (RNA- seq), restriction site associated DNA sequencing (RAD-Seq), and targeted capture (Hyb-seq). Of these four genome-partitioning approaches, targeted capture (especially Hyb-seq) shows the greatest promise for plant phy^ogenetics over the next fex~ years. This reviex~ wi~ aid ~esea^chers in their selection of appropriate genome-partitioning approaches to address questions of evolutionary scale, where we anticipate continued development and expansion ofwhole-genome sequencing strategies in the fields of plant phylogenomics and evolutionary biology research.展开更多
The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a par...The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.展开更多
Environmental temperature serves as a major driver of adaptive changes in wild organisms.To discover the mechanisms underpinning cold tolerance in domestic animals,we sequenced the genomes of 28 cattle from warm and c...Environmental temperature serves as a major driver of adaptive changes in wild organisms.To discover the mechanisms underpinning cold tolerance in domestic animals,we sequenced the genomes of 28 cattle from warm and cold areas across China.By characterizing the population structure and demographic history,we identified two genetic clusters,i.e.,northern and southern groups,as well as a common historic population peak at 30 kilo years ago.Genomic scan of cold-tolerant breeds determined potential candidate genes in the thermogenesis-related pathways that were under selection.Specifically,functional analysis identified a substitution of PRDM16(p.P779 L)in northern cattle,which maintains brown adipocyte formation by boosting thermogenesis-related gene expression,indicating a vital role of this gene in cold tolerance.These findings provide a basis for genetic variation in domestic cattle shaped by environmental temperature and highlight the role of reverse mutation in livestock species.展开更多
A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae i...A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae is an economically important plant pathogenic fungus whose genome is fully sequenced. Recently we have reported the development and application of functional genomics platform technologies in M. oryzae. This model approach would have many practical ramifications in design and implementation of upcoming functional genomics studies of filamentous fungi aimed at understanding fungal pathogenicity.展开更多
The fully sequenced genomes of Arabidopsis, rice, tomato, potato, ma ize, wheat, and soybean offer large amounts of information about cellular and de velopmental biology. It is a central challenge of genomics to use t...The fully sequenced genomes of Arabidopsis, rice, tomato, potato, ma ize, wheat, and soybean offer large amounts of information about cellular and de velopmental biology. It is a central challenge of genomics to use this informati on in discovering the function of proteins and identifying developmentally impor tant genes. Although classical genetic approaches to gene identification which r ely on disruption of a gene leading to a recognizable phenotype continues to be an extremely successful one, T-DNA mediated gene trap tagging which has been dev eloped that utilize random integration of reporter gene constructs has also prov en to be an extremely powerful tool in plant cellular developmental biology. In this review, how gene trap tagging, promoter trap tagging, and enhancer trap tag ging detection systems have been applied to plant biology is described and these gene identification techniques could be useful to the plant molecular biology a nd plant biotechnology community.展开更多
Genomic sequences have been determined for a number of strains of Helicobacter pylori (H pylori) and related bacteria. With the development of microarray analysis and the wide use of subtractive hybridization techni...Genomic sequences have been determined for a number of strains of Helicobacter pylori (H pylori) and related bacteria. With the development of microarray analysis and the wide use of subtractive hybridization techniques, comparative studies have been carried out with respect to the interstrain differences between H pylori and inter-species differences in the genome of related bacteria. It was found that the core genome of H pylori constitutes 1111 genes that are determinants of the species properties. A great pool of auxiliary genes are mainly from the categories of cag pathogenicity islands, outer membrane proteins, restriction-modification system and hypothetical proteins of unknown function. Persistence of H pylori in the human stomach leads to the diversification of the genome. Comparative genomics suggest that a host jump has occurs from humans to felines. Candidate genes specific for the development of the gastric diseases were identified. With the aid of proteomics, population genetics and other molecular methods, future comparative genomic studies would dramatically promote our understanding of the evolution, pathogenesis and microbiology of Hpylori.展开更多
基金supported by the China Postdoctoral Science Foundation(2022M722020)to Z.L.Key Project of Scientific Research Program of Shaanxi Provincial Education Department(23JY020)to Z.L.+5 种基金Natural Science Basic Research Program of Shaanxi(2024JCYBMS-152)to Z.L.Key Projects of Shaanxi University of Technology(SLGKYXM2302)to Z.L.Opening Foundation of Shaanxi University of Technology(SLGPT2019KF02-02)to Z.L.Natural Science Basic Research Program of Shaanxi(2020JM-280)to G.L.Fundamental Research Funds for the Central Universities(GK201902008)to G.LNational Natural Science Foundation of China(31570378)to X.M.
文摘Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.
文摘Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing.
基金supported by the National Natural Science Foundation of China(Grant No.32101541)the National Key R&D Program of China(Grant No.2022YFD2200400).
文摘Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.
文摘In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system.
文摘This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutting-edge fields of genomics and bioinformatics, the application of AI is propelling a deeper understanding of complex genetic mechanisms and the development of innovative therapeutic approaches. The precision of AI in genomic sequence analysis, coupled with breakthroughs in precise gene editing, such as AI-designed gene editors, significantly enhances our comprehension of gene functions and disease associations . Moreover, AI’s capabilities in disease prediction, assessing individual disease risks through genomic data analysis, provide robust support for personalized medicine. AI applications extend beyond gene identification, gene expression pattern prediction, and genomic structural variant analysis, encompassing key areas such as epigenetics, multi-omics data integration, genetic disease diagnosis, evolutionary genomics, and non-coding RNA function prediction. Despite challenges including data privacy, algorithm transparency, and bioethical issues, the future of AI is expected to continue revolutionizing genomics and bioinformatics, ushering in a new era of personalized medicine and precision treatments.
基金supported by the Guangdong Provincial Key R&D Program (2022B1111040001)the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0402/2019QZKK0501)National Natural Science Foundation of China (32170426)。
文摘Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions,thus limiting their ability to expand into novel environments.However,the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood.The Niviventer niviventer species complex(NNSC),consisting of highly abundant wild rats in Southeast Asia and China,offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related.In the present study,we combined ecological niche modeling with phylogenetic analysis,which suggested that sister species cannot be both widespread and dominant within the same geographical region.Moreover,by assessing heterozygosity,linkage disequilibrium decay,and Tajima's D analysis,we found that widespread species exhibited higher genetic diversity than narrow-range species.In addition,by exploring the“genomic islands of speciation”,we identified 13 genes in highly divergent regions that were shared by the two widespread species,distinguishing them from their narrow-range counterparts.Functional annotation analysis indicated that these genes are involved in nervous system development and regulation.The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.
基金National Natural Science Foundation of China (82060461)Hainan Provincial Nature Foundation Innovation Research Team Project (820CXTD447)。
文摘Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is higher among Asians and it shows various pathogenic factors.Patients of UTUC have a short lifespan,and most of them have shown invasive malignant tumors at the time of initial diagnosis.The treatment of most UTUC patients is limited to surgical resection,radiotherapy and chemotherapy in clinical.Due to its rarity,the studies on targeted therapy are rare.With the development of the targeted therapy and immunotherapy,genomics exploration that affects the prognosis of UTUC becomes particularly important.In this paper,we intend to review the differential expression,clinical significance and some special types of UTUC genomes through the UTUC genome.
基金supported by National Natural Science Foundation of China(32060091&31660081)Reserve Talents Project for Young and Middle-Aged Academic and Technical Leaders of Yunnan Province(202105AC160063)。
文摘Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extensive research on the genus,Roscoea species remain poorly defined and relationships between these species are not well resolved.In this study,we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the"Chinese"clade of Roscoea and as DNA super barcodes for species discrimination.We found that Roscoea plastid genomes ranged in length from 163,063 to 163,796 bp,and encoded 113 genes,including 79 protein-coding genes,30 tRNA genes,four rRNA genes.In addition,expansion and contraction of the IR regions showed obvious infraspecifc conservatism and interspecific differentiation.Plastid phylogenomics revealed that species belonging to the"Chinese"clade of Roscoea can be divided into four distinct subclades.Furthermore,our analysis supported the independence of R.cautleoides var.pubescens,the recovery of Roscoea pubescens Z.Y.Zhu,and a close relationship between R.humeana and R.cautloides.When we used the plastid genome as a super barcode,we found that it possessed strong discriminatory power(90%)with high support values.Intergenic regions provided similar resolution,which was much better than that of protein-coding regions,hypervariable regions,and DNA universal barcodes.However,plastid genomes could not completely resolve Roscoea phylogeny or definitively discriminate species.These limitations are likely related to the complex history of Roscoea speciation,poorly defined species within the genus,and the maternal inheritance of plastid genomes.
基金supported by the National Basic Research Program of China(No.2004CB117200)the National Natural Science Foundation of China(No.31261140368)
文摘Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR) or "Cenoplasmics" is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.
文摘The study of gene function in filamentous fungi is a field of research that has made great advances in very recent years. A number of transformation and gene manipulation strategies have been developed and applied to a diverse and rapidly expanding list of economically important filamentous fungi and oomycetes. With the significant number of fungal genomes now sequenced or being sequenced, functional genomics promises to uncover a great deal of new information in coming years. This review discusses recent advances that have been made in examining gene function in filamentous fungi and describes the advantages and limitations of the different approaches.
文摘Proso millet (Panicummiliaceum) has highwater use efficiency (WUE), a short growing-season, and is highly adapted to a semi-arid climate. Genomic resources for proso millet are very limited. Large numbers of DNA markers and other genomic tools in proso millet can readily be developed by using genomic resources in related grasses. The objectives of the present report were to 1) test and characterize switchgrass SSR markers for use in proso millet, and 2) elucidate repeat-motifs in proso millet based on new SSR marker analysis. A total of 548 SSR markers were tested on 8 proso millet genotypes. Out of these, 339 amplified SSR markers in proso millet. This showed that 62% of the switchgrass SSR markers were transferable to proso millet. Of these 339 markers, 254 were highly polymorphic among the 8 proso genotypes. The resolving power of these 254 polymorphic SSR markers ranged from 0.25-14.75 with an average of 2.71. The 254 polymorphic SSR markers amplified 984 alleles in the ranges of 50 bp to 1300 bp. The majority of the SSR markers (221 of 254) amplified dinucleotide repeats. Based on SSR marker analysis, AG/GA was the most abundant repeat-motifs in proso millet. Switchgrass genomic information seems to be the most useful for developing DNA markers in proso millet. Markers developed in this study will be helpful for linkage map construction, mapping agronomic traits and future molecular breeding efforts in proso millet.
基金supported by the United States Department of Agriculture NIFA_AFRP(2015-70005-24071)the Agricultural Research Service base fund
文摘Alfalfa(M. sativa L.) is a highly valuable forage crop, providing >58 Mt of hay, silage, and pasture each year in the United States. As alfalfa is an outcrossing autotetraploid crop,however, breeding for enhanced agronomic traits is challenging and progress has historically not been rapid. Methods that make use of genotypic information and statistical models to generate a genomic estimated breeding value(GEBV) for each plant at a young age hold a great deal of promise to accelerate breeding gains. An emerging genomic breeding pipeline employs SNP chips or genotyping-by-sequencing(GBS) to identify SNP markers in a training population, followed by the use of a statistical model to find associations between the discovered SNPs and traits of interest, followed by genomic selection(GS), a breeding program utilizing the trained model to predict breeding values and making selections based on the estimated breeding value(EBV). Much work has been done in recent years in all of these areas, to generate marker sets and discover SNPs associated with desirable traits, and the application of these technologies in alfalfa breeding programs is under way. However, GBS/GWAS/GS is still a new breeding paradigm,and work is ongoing to evaluate different models, software, and methods for use in such programs. In this review, we look at the progress of alfalfa genomics over the past halfdecade, and review work comparing models and methods relevant to this new type of breeding strategy.
基金supported by the DoD Breast Cancer Research Program Breakthrough Level 1 Award W81XWH-19-1-0668,NIH-NCI R21 CA253108-01DoD Prostate Cancer Research Program Idea Development Award W81XWH-18-1-0524+2 种基金Key R&D Program of Guangdong Province,China(No.2021B0101420006)National Science Fund for Distinguished Young Scholars,China(No.81925023)National Natural Science Foundation of China(No.62002082,62102103,61906050,81771912)。
文摘In the last decade,the focus of computational pathology research community has shifted from replicating the pathological examination for diagnosis done by pathologists to unlocking and discovering"sub-visual"prognostic image cues from the histopathological image.While we are getting more knowledge and experience in digital pathology,the emerging goal is to integrate other-omics or modalities that will contribute for building a better prognostic assay.In this paper,we provide a brief review of representative works that focus on integrating pathomics with radiomics and genomics for cancer prognosis.It includes:correlation of pathomics and genomics;fusion of pathomics and genomics;fusion of pathomics and radiomics.We also present challenges,potential opportunities,and avenues for future work.
基金supported by the Large-scale Scientific Facilities of the Chinese Academy of Sciences (Grant No: 2017-LSFGBOWS-01)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000)the Program of Science and Technology Talents Training of Yunnan Province (2017HA014)
文摘The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets of the genome have emerged in the fields of phylogenomics and evolutionary genomics. In this review, we summarize the applications, advantages and limitations of four NGS-based genome- partitioning approaches in plant phylogenomics: genome skimming, transcriptome sequencing (RNA- seq), restriction site associated DNA sequencing (RAD-Seq), and targeted capture (Hyb-seq). Of these four genome-partitioning approaches, targeted capture (especially Hyb-seq) shows the greatest promise for plant phy^ogenetics over the next fex~ years. This reviex~ wi~ aid ~esea^chers in their selection of appropriate genome-partitioning approaches to address questions of evolutionary scale, where we anticipate continued development and expansion ofwhole-genome sequencing strategies in the fields of plant phylogenomics and evolutionary biology research.
文摘The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.
基金supported by the General Program(Major Research Plan)of National Natural Science Foundation of China(92057208)National Key Research and Development Program of China(2018YFD0501702)+4 种基金Youth Program of the National Natural Science Foundation of China(31900830)National Natural Science Foundation of China(81770834)Jilin Provincial Development and Reform Commission Budget Capital Construction Fund Project(2018M640182)111 Project(D20034)China Postdoctoral Science Foundation Funded Project(2018M640182 to J.L.)。
文摘Environmental temperature serves as a major driver of adaptive changes in wild organisms.To discover the mechanisms underpinning cold tolerance in domestic animals,we sequenced the genomes of 28 cattle from warm and cold areas across China.By characterizing the population structure and demographic history,we identified two genetic clusters,i.e.,northern and southern groups,as well as a common historic population peak at 30 kilo years ago.Genomic scan of cold-tolerant breeds determined potential candidate genes in the thermogenesis-related pathways that were under selection.Specifically,functional analysis identified a substitution of PRDM16(p.P779 L)in northern cattle,which maintains brown adipocyte formation by boosting thermogenesis-related gene expression,indicating a vital role of this gene in cold tolerance.These findings provide a basis for genetic variation in domestic cattle shaped by environmental temperature and highlight the role of reverse mutation in livestock species.
基金a grant from Biogreen 21 Project (No. 20080401034044)the Rural Development Administration of Korea, the Crop Functional Genomics Center (No. CG1141) of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology of Koreathe Korean Research Foundation Grant (No. KRF-2006-005-J04701)
文摘A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae is an economically important plant pathogenic fungus whose genome is fully sequenced. Recently we have reported the development and application of functional genomics platform technologies in M. oryzae. This model approach would have many practical ramifications in design and implementation of upcoming functional genomics studies of filamentous fungi aimed at understanding fungal pathogenicity.
文摘The fully sequenced genomes of Arabidopsis, rice, tomato, potato, ma ize, wheat, and soybean offer large amounts of information about cellular and de velopmental biology. It is a central challenge of genomics to use this informati on in discovering the function of proteins and identifying developmentally impor tant genes. Although classical genetic approaches to gene identification which r ely on disruption of a gene leading to a recognizable phenotype continues to be an extremely successful one, T-DNA mediated gene trap tagging which has been dev eloped that utilize random integration of reporter gene constructs has also prov en to be an extremely powerful tool in plant cellular developmental biology. In this review, how gene trap tagging, promoter trap tagging, and enhancer trap tag ging detection systems have been applied to plant biology is described and these gene identification techniques could be useful to the plant molecular biology a nd plant biotechnology community.
文摘Genomic sequences have been determined for a number of strains of Helicobacter pylori (H pylori) and related bacteria. With the development of microarray analysis and the wide use of subtractive hybridization techniques, comparative studies have been carried out with respect to the interstrain differences between H pylori and inter-species differences in the genome of related bacteria. It was found that the core genome of H pylori constitutes 1111 genes that are determinants of the species properties. A great pool of auxiliary genes are mainly from the categories of cag pathogenicity islands, outer membrane proteins, restriction-modification system and hypothetical proteins of unknown function. Persistence of H pylori in the human stomach leads to the diversification of the genome. Comparative genomics suggest that a host jump has occurs from humans to felines. Candidate genes specific for the development of the gastric diseases were identified. With the aid of proteomics, population genetics and other molecular methods, future comparative genomic studies would dramatically promote our understanding of the evolution, pathogenesis and microbiology of Hpylori.