期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Behavior of interfacial stresses between RC beams and GFRP sheets 被引量:3
1
作者 王文炜 李果 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期105-111,共7页
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC... Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results. 展开更多
关键词 glass fiber reinforced plastic gfrp strengthening reinforced concrete beam shear stress normal stress
下载PDF
盐湖高寒地区GFRP夹芯复合筋耐久性研究
2
作者 李双营 赵建昌 《力学与实践》 北大核心 2020年第4期455-462,共8页
对玻璃纤维(glassfiber reinforced polymer, GFRP)筋和GFRP–钢筋夹芯复合筋在盐湖地区多重环境因素耦合作用下进行耐久性试验,分析环境类型及作用时间对极限抗拉强度、弹性模量、极限应变的影响。结果表明:在多重因素耦合作用下,随着... 对玻璃纤维(glassfiber reinforced polymer, GFRP)筋和GFRP–钢筋夹芯复合筋在盐湖地区多重环境因素耦合作用下进行耐久性试验,分析环境类型及作用时间对极限抗拉强度、弹性模量、极限应变的影响。结果表明:在多重因素耦合作用下,随着盐湖卤水腐蚀周期、冻融次数、干湿循环次数的增加,GFRP筋和GFRP夹芯复合筋的抗拉强度逐渐减小,但是GFRP筋减小的幅度较小,而GFRP夹芯复合筋由于有钢筋的存在,抗拉强度减小比较大,特别是在盐湖卤水90 d以上、冻融150次以上时GFRP夹芯复合筋的极限抗拉强度实验不是很明显,屈服强度几乎不存在并且与抗拉极限强度相接近,表现出明显的脆性;在各种因素作用下,GFRP筋随着龄期的增加,弹性模量先减少后增加,而GFRP夹芯复合筋的弹性模量逐渐减小,相对来讲减小的幅度不是很大;各种耦合因素作用下GFRP筋和GFRP夹芯复合筋的极限抗拉强度、弹性模量均比单因素作用下小,且腐蚀性的大小关系是盐湖卤水+干湿循环+冻融耦合>盐湖卤水+干湿循环>冻融>盐湖卤水。 展开更多
关键词 土木工程材料 gfrp(glassfiber reinforced polymer)夹芯复合筋 盐湖地区 耐久性试验
下载PDF
Experimental Analysis on Local Buckling of GFRP?Foam Sandwich Pipe Under Axial Compressive Loading
3
作者 CHEN Li CHEN Li +2 位作者 PAN Darong ZHAO Qilin NIU Longlong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期129-142,共14页
To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing ... To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter. 展开更多
关键词 sandwich pipe polyurethane foam glass fiber reinforced plastic(gfrp) local buckling axial compression
下载PDF
Behaviour of Multiscale Progressive Damage for Different Matrix Glass Fiber Reinforced Plastics Bars
4
作者 陈智 陆伟 +1 位作者 李小青 郑立斐 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期32-37,共6页
The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage pro... The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage process. The two different matrices of unsaturated polyester and vinylester GFRP bars were selected to carry out a series of macro-mesoscopic physical and mechanical tests to analyze the tensile progressive damage process on a multiscale. The formation of apparent crack,the bonding of internal components as well as the strain change were all reflected damage evolution of GFRP bar,and a certain correlation existed between them. Wherein the matrix has an obvious impact on the damage of bar,the component stress transfer effect of vinylester bar is better than unsaturated polyester from crack propagation observation and scanning electron microscopy( SEM). The cyclic loading tests quantitatively reflect the difference of damage accumulation between different matrix bars,and the failure load of bars decreases nearly 10%. 展开更多
关键词 multiscale progressive damage glass fiber reinforced plastics(gfrp) crack propagation cyclic loading
下载PDF
Preparation and Mechanical Properties of UV⁃Assisted Filament Winding Glass Fiber Reinforced Polymer⁃Matrix Composite
5
作者 CHEN Xiaodong LI Yong +2 位作者 HUAN Dajun WANG Wuqiang LIU Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第3期467-480,共14页
This paper studied the preparation and mechanical properties of glass fiber reinforced polymer-matrix composite rings prepared by filament winding assisted by ultraviolet(UV)curing.A ray-tracing method was used to cal... This paper studied the preparation and mechanical properties of glass fiber reinforced polymer-matrix composite rings prepared by filament winding assisted by ultraviolet(UV)curing.A ray-tracing method was used to calculate the penetration ability of UV light in the resin casting,and then a typical composite ring with dual⁃curing characteristics was prepared by UV-assisted curing.The effects of winding speed and thermal initiator concentration on the distribution of fiber fraction and mechanical properties were studied.Microscopic morphology was used for the observation of the differences in fiber volume fraction.Mechanical properties tests and scanning electron micrographs were performed to investigate the failure and damage mechanisms of the composite ring samples.The ray tracing results indicate that the UV light can pass through a single yarn thickness and the energy transmitted is sufficient to cure the back side quickly.The experimental results show that the mechanical properties of the composite ring prepared in this paper are comparable to those of the heat-cured samples,which is sufficient to meet the requirements of the flywheel. 展开更多
关键词 glass fiber reinforced polymer(gfrp) ultraviolet(UV)curing dual-curable resin mechanical properties fiber volume fraction
下载PDF
Thermal Effects on Bond Properties of GFRP Rebars Embedded in Concrete
6
作者 Radhouane Masmoudi Abdelmonem Masmoudi +1 位作者 Atef Daoud Mongi Ben Ouezdou 《Journal of Civil Engineering and Architecture》 2010年第3期1-5,共5页
This paper presents the results of an experimental study on the thermal effects on glass fibre reinforced polymer (GFRP) bars embedded in concrete. The pullout test specimens were subjected to temperatures of 40℃,... This paper presents the results of an experimental study on the thermal effects on glass fibre reinforced polymer (GFRP) bars embedded in concrete. The pullout test specimens were subjected to temperatures of 40℃, 60℃ and 80℃ during a continuous four months-period of time. The results were compared to the reference specimens (room temperature). It was found that up to 60℃, the loss in bond strength due to the temperature is not significant, whereas for the 80℃-temperature a reduction of 14% in the bond strength is observed. Also, the bond-slip relationship was modelled using the CMR-model and new coefficients are proposed for the bond-slip behaviour of GFRP bars. 展开更多
关键词 Ageing bond behaviour CONCRETE glass fibre reinforced polymer gfrp pullout tests.
下载PDF
GFRP Poles for Traffic Signs and Signal Poles: A Case Study in Saudi Arabia
7
作者 Waseem Ahmad Khatri Muhammed Al Mehthel +1 位作者 Mirza M. Baig Tariq Al Baker 《Open Journal of Civil Engineering》 CAS 2022年第4期476-491,共16页
GFRP poles have been widely used as lighting poles but their use as traffic signs and signal poles is still under development. This paper highlights the literature review and case study of using GFRP poles for traffic... GFRP poles have been widely used as lighting poles but their use as traffic signs and signal poles is still under development. This paper highlights the literature review and case study of using GFRP poles for traffic signs and signal poles in the Eastern Province of Saudi Arabia. The case study details the design of poles, construction, maintenance and their performance. Traffic sign poles were manufactured using filament winding and signal poles using pultrusion process. AASHTO Standard “Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals” and ANSI 136.2. were used as materials specification and design for the pole. There is a need to develop dedicated design and construction guidelines to standardize the construction process. Further study about the crash resistance of GFRP poles at different speeds needs to be explored. In addition, the paper presents a high level comparison between the different materials like weight, safety, environmental degradation, strength, service life, durability in an aggressive environment, carbon footprint and economics. 展开更多
关键词 Glass Fiber reinforced Plastics (gfrp) POLES FOUNDATIONS Filament Winding PULTRUSION
下载PDF
Thermal Structure of Glass Fiber Reinforce Plastic Support Structure 被引量:2
8
作者 刘康 汪荣顺 +1 位作者 石玉美 顾安忠 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期370-374,共5页
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse... The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications. 展开更多
关键词 glass fiber reinforced plastics gfrp tube support structure CRYOGENIC temperature stress
下载PDF
Axial compressive behavior of GFRP-timber-reinforced concrete composite columns
9
作者 Fubin Zhang Hu Luo +3 位作者 Jianzhuang Xiao Amardeep Singh Jing Xu Hai Fang 《Low-carbon Materials and Green Construction》 2023年第1期48-64,共17页
This paper investigated the compressive behavior of a novel glass fiber reinforced polymer(GFRP)-timber-reinforced concrete composite column(GTRC column),which consisted of reinforced concrete with an outer GFRP lamin... This paper investigated the compressive behavior of a novel glass fiber reinforced polymer(GFRP)-timber-reinforced concrete composite column(GTRC column),which consisted of reinforced concrete with an outer GFRP laminate and a paulownia timber core.The axial compression tests were performed on 13 specimens to validate the effects of various timber core diameters,slenderness ratios,and GFRP laminate layers/angles on the mechanical behaviors.Test results indicated that with the increase in the timber core diameter,the ductility and energy dissipation ability of the composite column increased by 52.6%and 21.6%,respectively,whereas the ultimate load-bearing capacity and initial stiffness showed a slight decrease.In addition,the GFRP laminate considerably improved the ultimate load-bearing capacity,stiffness,ductility and energy dissipation capability by 212.1%,26.6%,64.3%and 3820%,accordingly.Moreover,considering the influence of timber core diameter,an ultimate load-bearing capacity adjustment coefficient was proposed.Finally,a formula was established based on the force equilibrium and superposition for predicting the axial bearing capacity of the GTRC columns. 展开更多
关键词 Glass fiber reinforced polymer(gfrp) Timber core reinforced concrete Composite column Axial compression
原文传递
Static and Fatigue Behavior of Hybrid Bonded/Bolted Glass Fiber Reinforced Polymer Joints Under Tensile Loading
10
作者 WANG Jinxiao CHENG Bin +2 位作者 XIANG Sheng LI Sida YAN Xingfei 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第5期817-830,共14页
This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue ... This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue behaviors in the experimental campaign.The static tests of uniaxial tension loading are first conducted,from which the static ultimate bearing capacities of the joints are obtained.High-cycle fatigue tests are subsequently carried out so that the fatigue failure mode,fatigue life,and stiffness degradation of joints can be obtained.The measuring techniques including acoustic emission monitoring and three-dimensional digital image correlation have been employed in the tests to record the damage development process.The results revealed that the static strength and fatigue behavior of such thick hybrid GFRP joints were controlled by the bolted connections.The four stages of fatigue failure process are obtained from tests and acoustic emission signals analysis:cumulative damage of adhesive layer,damage of the adhesive layer,cumulative damage of GFRP plate,and damage of GFRP plate.The fatigue life and stiffness degradation can be improved by more bolts.The S-N(fatigue stress versus life)curves for the fatigue design of the single-lap hybrid GFRP joints under uniaxial tension loading are also proposed. 展开更多
关键词 glass fiber reinforced polymer(gfrp)joint hybrid bonded/bolted connection fatigue behavior acoustic emission digital image correlation
原文传递
Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading 被引量:3
11
作者 Chun-yang ZHU Ying-hua ZHAO +1 位作者 Shuang GAO Xiao-fei LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第11期778-788,共11页
The mechanical behavior of concrete-filled glass fiber reinforced polymer(GFRP)-steel tube structures under combined seismic loading is investigated in this study. Four same-sized specimens with different GFRP layout ... The mechanical behavior of concrete-filled glass fiber reinforced polymer(GFRP)-steel tube structures under combined seismic loading is investigated in this study. Four same-sized specimens with different GFRP layout modes were tested by a quasi-static test system. Finite element analysis(FEA) was also undertaken and the results were presented. Results of the numerical simulation compared well with those from experimental tests. Parametric analysis was conducted by using the FE models to evaluate the effects of GFRP thickness, axial compression rate, and cross sectional steel ratio. The experimental and numerical results show that the technique of GFRP strengthening is effective in improving the seismic performance of traditional concrete-filled steel tubes, with variations related to different GFRP layout modes. 展开更多
关键词 Concrete-filled glass fiber reinforced polymer(gfrp)-steel tube SEISMIC Energy dissipation Stiffness degradation
原文传递
Bond Mechanical Properties of Glass Fiber Reinforced Polymer Anti-Floating Anchor in Concrete Baseplate 被引量:2
12
作者 BAI Xiaoyu ZHENG Chen +2 位作者 ZHANG Mingyi LIU Xueying KUANG Zheng 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第6期804-812,共9页
Combined with fiber Bragg grating(FBG)sensing technology,four glass fiber reinforced polymer(GFRP)anti-floating anchors and four steel anti-floating anchors were tested for on-site destructive failure to investigate t... Combined with fiber Bragg grating(FBG)sensing technology,four glass fiber reinforced polymer(GFRP)anti-floating anchors and four steel anti-floating anchors were tested for on-site destructive failure to investigate the anchoring performance and the bonding characteristics between GFRP anti-floating anchor and concrete floor.The test results show that bending GFRP anchor will be broken at the common boundary between vertical anchorage section and bending section during the pullout process,and the spring-back load provided by the rupture contributes to a decrease of bearing capacity and an inflection point on the load-slip curve.The loaddisplacement curve of the straight anchor GFRP anti-floating anchor is smoother and has better predictability than the same type of steel anchor.Additionally,different forms of GFRP anti-floating bolt have different bondslip constitutive relations.By introducing the sliding-slip correction factor of bending bolt,constitutive models describing the rising-section of sliding-slip relation of bending and straight-anchored GFRP anti-floating bolt are established respectively.The model can fit the test results rightly. 展开更多
关键词 glass fiber reinforced polymer(gfrp) anti-floating anchor bolt axial force bearing capacity loadslip constitutive relationship
原文传递
Experimental Study of the Shear Capacity of Glass Fiber Reinforced Polymer Reinforced Concrete Beam with Circular Cross Section
13
作者 师晓权 张志强 李志业 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第4期408-414,共7页
In order to research the shear behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam with circular cross section, based on the test results of 36 concrete beams subjected to four-point loading up ... In order to research the shear behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam with circular cross section, based on the test results of 36 concrete beams subjected to four-point loading up to failure, the shear capacity and mechanical properties of deformation were analyzed comparatively between GFRP reinforced concrete (GFRP-RC) beams and steel reinforced concrete (steel-RC) beams. Furthermore, influencing factors of shear capacity of GFRP-RC beam with circular cross section were also investigated. The test results indicate that the failure modes of GFRP-RC and steel-RC beams are the same, but the crack patterns are slightly different. And, the shear capacity of GFRP-RC beam firstly increases with the reduction of shear span ratio, and then decreases. In addition, it was found that the influencing coefficient of GFRP on concrete increases with shear span ratio reducing. 展开更多
关键词 concrete beam glass fiber reinforced polymer (gfrp) circular cross section influencing coefficient
原文传递
Friction and Cutting Properties of Hot-Filament Chemical Vapor Deposition Micro-and Fine-grained Diamond Coated Silicon Nitride Inserts 被引量:4
14
作者 杨国栋 沈彬 孙方宏 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第5期519-525,共7页
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting proper... The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one. 展开更多
关键词 silicon nitride hot-filament chemical vapor deposition(HFCVD) friction and wear glass fiber reinforced plastics(gfrp)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部