针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置...针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置,辨别异常点类型.并利用我国人口自然增长数据进行仿真分析,研究结果表明:贝叶斯方法能够有效地识别ARMA序列的异常点.展开更多
文摘利用红外成像系统跟踪多个相距很近的点目标时,目标在成像面上的弥散像会发生交叠,导致成像系统无法有效分辨这些目标。本文提出了一种分辨这类小间距目标(Closely Spaced Objects,CSO)的新方法,通过建立小间距目标的成像模型,采用Gibbs抽样方法对小间距目标在焦平面上的中心位置和响应幅度进行估计,并利用贝叶斯信息准则(Bayesian Information Criterion,BIC)检测目标数目。针对仿真生成的红外图像进行了仿真实验,实验结果表明本文方法对小间距目标的分辨是有效的。
基金partly supported by the China Postdoctoral Science Foundation(Grant No.2017M610156)the National Natural Science Foundation of China(Grant No.11501167)the Young Academic Leaders Project of Henan University of Science and Technology(Grant No.13490008)
文摘针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置,辨别异常点类型.并利用我国人口自然增长数据进行仿真分析,研究结果表明:贝叶斯方法能够有效地识别ARMA序列的异常点.