提出一种大规模声学边界元法的高效率、高精度GPU并行计算方法.基于Burton-Miller边界积分方程,推导适于GPU的并行计算格式并实现了传统边界元法的GPU加速算法.为提高原型算法的效率,研究GPU数据缓存优化方法.由于GPU的双精度浮点运算...提出一种大规模声学边界元法的高效率、高精度GPU并行计算方法.基于Burton-Miller边界积分方程,推导适于GPU的并行计算格式并实现了传统边界元法的GPU加速算法.为提高原型算法的效率,研究GPU数据缓存优化方法.由于GPU的双精度浮点运算能力较低,为了降低数值误差,研究基于单精度浮点运算实现的doublesingle精度算法.数值算例表明,改进的算法实现了最高89.8%的GPU使用效率,且数值精度与直接使用双精度数相当,而计算时间仅为其1/28,显存消耗也仅为其一半.该方法可在普通PC机(8GB内存,NVIDIA Ge Force 660 Ti显卡)上快速完成自由度超过300万的大规模声学边界元分析,计算速度和内存消耗均优于快速边界元法.展开更多
文摘提出一种大规模声学边界元法的高效率、高精度GPU并行计算方法.基于Burton-Miller边界积分方程,推导适于GPU的并行计算格式并实现了传统边界元法的GPU加速算法.为提高原型算法的效率,研究GPU数据缓存优化方法.由于GPU的双精度浮点运算能力较低,为了降低数值误差,研究基于单精度浮点运算实现的doublesingle精度算法.数值算例表明,改进的算法实现了最高89.8%的GPU使用效率,且数值精度与直接使用双精度数相当,而计算时间仅为其1/28,显存消耗也仅为其一半.该方法可在普通PC机(8GB内存,NVIDIA Ge Force 660 Ti显卡)上快速完成自由度超过300万的大规模声学边界元分析,计算速度和内存消耗均优于快速边界元法.