期刊文献+
共找到1,215篇文章
< 1 2 61 >
每页显示 20 50 100
Evaluating the Effects of Graviton Redshift upon Spiral Galaxy Rotation Curves, Surface Brightness Magnitudes and Gravitational Lensing
1
作者 Firmin J. Oliveira 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期967-985,共19页
The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter c... The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter. 展开更多
关键词 GRAVITONS gravitational Redshift Surface Brightness gravitational Lens Lens Mass
下载PDF
The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons
2
作者 Antoine Acke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期986-1002,共17页
In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carri... In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law. 展开更多
关键词 GRAVITY gravitational Field gravitational Interaction Informatons
下载PDF
Decoupling Algorithms for the Gravitational Wave Spacecraft
3
作者 XueWang Weizhou Zhu +4 位作者 Zhao Cui Xingguang Qian Jinke Yang Jianjun Jia Yikun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期325-337,共13页
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis... The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise. 展开更多
关键词 gravitational waves spacecraft laser acquisition decoupling algorithms dynamical model optical axis control
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
4
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
Simulation Study on Constraining Gravitational Wave Propagation Speed by Gravitational Wave and Gamma-ray Burst Joint Observation on Binary Neutron Star Mergers
5
作者 Jin-Hui Rao Shu-Xu Yi +1 位作者 Lian Tao Qing-Wen Tang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第8期42-51,共10页
Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method tha... Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET. 展开更多
关键词 gravitational waves-(stars)gamma-ray burst general-stars NEUTRON
下载PDF
Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector
6
作者 陈奕康 朱宗宏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期222-228,共7页
Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg... Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions. 展开更多
关键词 neutron star mergers gravitational waves
下载PDF
The Multi-parameter Test of Gravitational Wave Dispersion with Principal Component Analysis
7
作者 Zhi-Chu Ma Rui Niu Wen Zhao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第5期140-150,共11页
In this work, we consider a conventional test of gravitational wave(GW) propagation which is based on the phenomenological parameterized dispersion relation to describe potential departures from General Relativity(GR)... In this work, we consider a conventional test of gravitational wave(GW) propagation which is based on the phenomenological parameterized dispersion relation to describe potential departures from General Relativity(GR)along the propagation of GWs. But different from tests conventionally performed previously, we vary multiple deformation coefficients simultaneously and employ the principal component analysis(PCA) method to remedy the strong degeneracy among deformation coefficients and obtain informative posteriors. The dominant PCA components can be better measured and constrained, and thus are expected to be more sensitive to potential departures from the waveform model. Using this method we analyze ten selected events and get the result that the combined posteriors of the dominant PCA parameters are consistent with GR within 99.7% credible intervals. The standard deviation of the first dominant PCA parameter is three times smaller than that of the original dispersion parameter of the leading order. However, the multi-parameter test with PCA is more sensitive to not only potential deviations from GR but also systematic errors of waveform models. The difference in results obtained by using different waveform templates hints that the demands of waveform accuracy are higher to perform the multiparameter test with PCA. Whereas, it cannot be strictly proven that the deviation is indeed and only induced by systematic errors. It requires more thorough research in the future to exclude other possible reasons in parameter estimation and data processing. 展开更多
关键词 gravitational waves-gravitation-black hole physics
下载PDF
Mass Increase with Strong and Gravitational Potentials, and Mass Defect with Electromagnetic Potential
8
作者 Hany Ali Hussein 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1079-1094,共16页
The proposal is “mass increases due to strong and gravitational potentials, while it decreases due to Electromagnetic potential”. This proposal explains the big difference in mass between hadrons (protons, neutrons,... The proposal is “mass increases due to strong and gravitational potentials, while it decreases due to Electromagnetic potential”. This proposal explains the big difference in mass between hadrons (protons, neutrons, & mesons) and their components (quarks), mass difference between nucleus and its individual components (protons and neutrons), massless of gamma photons, abnormal masses of mesons and bosons, and the excess in galaxy masses (dark matter). Also, this proposal shows the exact relation between mass and energy: Strong Potential=−3.04mc2| Electric Potential |=−5.57×10−3mc2Gravitational Potential=−1.22×10−7mc2where m represents the excess in mass due to strong potential, or gravitational potential and represents the decrease in mass due to electromagnetic potential. Released energy here equals potential energy and doesn’t equal decrease in mass using the formula E = mc2. Released energy is transferred to heat, photons, kinetic energy… Finally, proposal will try to describe the relation between photon energy and mass of its components using the general equation of kinetic energy: Photon Energy=1/2mc2m is the sum of the individual masses of its components, while the total mass of photon is zero. 展开更多
关键词 Mass Defect Dark Matter PHOTON Gamma Photon Strong Potential gravitational Potential Electromagnetic Potential QUARKS Mesons BOSONS Deuterium Proton Neutron
下载PDF
The Formation of Oscillation Patterns Based on the Planetary Gravitational Field and Their Suitability for Earthquake Prediction
9
作者 Michael E. Nitsche 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期149-157,共9页
The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form o... The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes. 展开更多
关键词 Planetary gravitational Field Earthquake Prediction AI
下载PDF
Gravitational Waves Background, as Well as Some UFO, FRB and Supernova Flares, Are Due to Compressibility of the Spacetime (CoST)
10
作者 Evgeny A. Novikov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期67-70,共4页
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
关键词 gravitational Wave Background Quantum Modification of the General Relativity Compressibility of the Spacetime (CoST)
下载PDF
Effect of Gravitational Formula Change on Gravitational Anomalies
11
作者 Hans Peter Weber 《Journal of Modern Physics》 2024年第11期1632-1645,共14页
The gravitational constant G is a basic quantity in physics, and, despite its relative imprecision, appears in many formulas, for example, also in the formulas of the Planck units. The “relative inaccuracy” lies in ... The gravitational constant G is a basic quantity in physics, and, despite its relative imprecision, appears in many formulas, for example, also in the formulas of the Planck units. The “relative inaccuracy” lies in the fact that each measurement gives different values, depending on where and with which device the measurement is taken. Ultimately, the mean value was formed and agreed upon as the official value that is used in all calculations. In an effort to explore the reason for the inaccuracy of this quantity, some formulas were configured using G, so that the respective quantity assumed the value = 1. The gravitational constant thus modified was also used in the other Planck equations instead of the conventional G. It turned out that the new values were all equivalent to each other. It was also shown that the new values were all represented by powers of the speed of light. The G was therefore no longer needed. Just like the famous mass/energy equivalence E = m * c2, similar formulas emerged, e.g. mass/momentum = m * c, mass/velocity = m * c2 and so on. This article takes up the idea that emerges in the article by Weber [1], who describes the gravitational constant as a variable (Gvar) and gives some reasons for this. Further reasons are given in the present paper and are computed. For example, the Planck units are set iteratively with the help of the variable Gvar, so that the value of one unit equals 1 in each case. In this article, eleven Planck units are set iteratively using the variable Gvar, so that the value of one unit equals 1 in each case. If all other units are based on the Gvar determined in this way, a matrix of values is created that can be regarded both as conversion factors and as equivalence relationships. It is astonishing, but not surprising that the equivalence relation E = m * c2 is one of these results. All formulas for these equivalence relationships work with the vacuum speed of light c and a new constant K. G, both as a variable and as a constant, no longer appears in these formulae. The new thing about this theory is that the gravitational constant is no longer needed. And if it no longer exists, it can no longer cause any difficulties. The example of the Planck units shows this fact very clearly. This is a radical break with current views. It is also interesting to note that the “magic” number 137 can be calculated from the distances between the values of the matrix. In addition, a similar number can be calculated from the distances between the Planck units. This number is 131 and differs from 137 with 4.14 percent. This difference has certainly often led to confusion, for example, when measuring the Fine Structure Constant. 展开更多
关键词 System of Units Planck Constants gravitational Constant Variable Gravitation Equivalence Relations Number 137
下载PDF
The Gravitational Constant as the Function of the Cosmic Scale
12
作者 Qiao Bi 《Journal of Modern Physics》 2024年第11期1745-1759,共15页
This paper uses the cosmic evolution picture constructed by the principal and associated fiber bundles and, with the help of gauge invariance, systematically proposes the γfactor theory that the Newton’s law of univ... This paper uses the cosmic evolution picture constructed by the principal and associated fiber bundles and, with the help of gauge invariance, systematically proposes the γfactor theory that the Newton’s law of universal gravitation and the cosmological constant of Einstein’s equation must be corrected in the large-scale space-time structure of the universe. That is, it is found that the calculated value of Newton’s universal gravitation in space-time above the scale of galaxies must be multiplied by 1/γto be consistent with the measured value, and the cosmological constant of Einstein’s equation is no longer a constant but a function that increases with the increase of the scale of cosmic regions. Therefore, the cyclic hypothesis of cosmic evolution is proposed, and it is further found that the gravitational constant that people think is natural is not a constant but a function that changes with the scale of cosmic regions. Therefore, the reason for the dark matter and dark energy hypothesis may be that the gravitational constant is a variable. The existence of actual dark matter and dark energy may be just an illusory hypothesis, and their origin comes from the understanding that the gravitational constant is constant. 展开更多
关键词 The gravitational Constant The Einstein Equation The Evolution of Universe
下载PDF
Ratio of Gravitational Force to Electric Force from Empirical Equations in Terms of the Cosmic Microwave Background Temperature
13
作者 Tomofumi Miyashita 《Journal of Modern Physics》 2024年第5期674-689,共16页
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among... Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated. 展开更多
关键词 Ratio of gravitational Force to Electric Force Minimum Mass Temperature of the Cosmic Microwave Background
下载PDF
The Perihelion Precession of the Planets Indicates a Variability of the Gravitational Constant
14
作者 Hans Peter Weber 《Journal of Modern Physics》 CAS 2023年第5期670-675,共6页
The gravitational constant G according to the theory of NEWTON is the most imprecise constant of all physical constants. Moreover, there are a number of phenomena which suggest that this is caused by its invariant nat... The gravitational constant G according to the theory of NEWTON is the most imprecise constant of all physical constants. Moreover, there are a number of phenomena which suggest that this is caused by its invariant nature and the gravitation constant might be in fact a variable. In this article, a possible dependence of the gravitational constant on the distance between the two mass points is determined from the observed values of the perihelion displacement of the planets. However, to fit the observed measurements the 1/r<sup>2</sup> dependence is modified to a 1/r2+1/R</sup> dependence with “R” as the Rydberg constant. With the proposed new power function, the perihelion precessions of the planets are recalculated and then compared with previous observations as well as the postulated anomaly of Saturn. 展开更多
关键词 gravitational Constant Perihelion Precession of the Planets gravitational Equation with Variable G
下载PDF
Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data ReleaseⅠ 被引量:18
15
作者 Heng Xu Siyuan Chen +24 位作者 Yanjun Guo Jinchen Jiang Bojun Wang Jiangwei Xu Zihan Xue RNicolas Caballero Jianping Yuan Yonghua Xu Jingbo Wang Longfei Hao Jingtao Luo Kejia Lee Jinlin Han Peng Jiang Zhiqiang Shen Min Wang Na Wang Renxin Xu Xiangping Wu Richard Manchester Lei Qian Xin Guan Menglin Huang Chun Sun Yan Zhu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第7期300-311,共12页
Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the... Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs.The Chinese Pulsar Timing Array(CPTA)is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes.This short article serves as a“table of contents”for a forthcoming series of papers related to the CPTA Data Release 1(CPTA DR1)which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope.Here,after summarizing the time span and accuracy of CPTA DR1,we report the key results of our statistical inference finding a correlated signal with amplitude logA_(c)=-14.4_(-2.8)^(+1.0)for spectral index in the range ofα∈[-1.8,1.5]assuming a GW background(GWB)induced quadrupolar correlation.The search for the Hellings–Downs(HD)correlation curve is also presented,where some evidence for the HD correlation has been found that a 4.6σstatistical significance is achieved using the discrete frequency method around the frequency of 14 n Hz.We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the n Hz GWB,which could verify the current results. 展开更多
关键词 (stars:)pulsars:general gravitational waves methods:statistical methods:observational
下载PDF
Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection 被引量:1
16
作者 陶雅正 金洪波 吴岳良 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期20-26,共7页
In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error ... In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter. 展开更多
关键词 laser optical systems space mission gravitational wave
下载PDF
Predicting Gravitational Waves from Jittering-jets-driven Core Collapse Supernovae
17
作者 Noam Soker 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第12期1-6,共6页
I estimate the frequencies of gravitational waves from jittering jets that explode core collapse supernovae(CCSNe)to crudely be 5–30 Hz,and with strains that might allow detection of Galactic CCSNe.The jittering jets... I estimate the frequencies of gravitational waves from jittering jets that explode core collapse supernovae(CCSNe)to crudely be 5–30 Hz,and with strains that might allow detection of Galactic CCSNe.The jittering jets explosion mechanism(JJEM)asserts that most CCSNe are exploded by jittering jets that the newly born neutron star(NS)launches within a few seconds.According to the JJEM,instabilities in the accreted gas lead to the formation of intermittent accretion disks that launch the jittering jets.Earlier studies that did not include jets calculated the gravitational frequencies that instabilities around the NS emit to have a peak in the crude frequency range of 100–2000Hz.Based on a recent study,I take the source of the gravitational waves of jittering jets to be the turbulent bubbles(cocoons)that the jets inflate as they interact with the outer layers of the core of the star at thousands of kilometers from the NS.The lower frequencies and larger strains than those of gravitational waves from instabilities in CCSNe allow future,and maybe present,detectors to identify the gravitational wave signals of jittering jets.Detection of gravitational waves from local CCSNe might distinguish between the neutrino-driven explosion mechanism and the JJEM. 展开更多
关键词 gravitational waves-stars NEUTRON-STARS black holes-(stars )supernovae general-stars jets
下载PDF
Relationship between gravitational flap structures in the backlimb of anticlinal breakthrough Fault-Propagation Folds:case study of the Southern-Central Tunisian Atlas
18
作者 Soulef AMAMRIA Hassen BENSALEM +3 位作者 Hassan TAIB Mohamed Sadok BENSALEM Riheb HADJI Younes HAMED 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3525-3541,共17页
The development of orogenic belts structures in the Southern-Central Tunisian Atlas is influenced by the evolution of tectonic activities during different phases,which are also closely linked to the formation of gravi... The development of orogenic belts structures in the Southern-Central Tunisian Atlas is influenced by the evolution of tectonic activities during different phases,which are also closely linked to the formation of gravitational collapse structure.The typical example is that of the northern flank of the Jebel Orbata particularly the Ben Zannouch fold.It is an asymmetrical anticline interpreted by the model of“Fault Propagation Folds”.The development of the Ben Zannouch structures is resulted from landslides,scree falls and inverted layers plunging to the south.The direction of resulted gravitational structure is parallel to the main thrust direction of the Bou Omrane anticline.The thrust activity of Bou Omrane fault is associated to the important paleo-slope facing south and plastic lithology(incompetent marl layers)of outcropped series,facilitates the development of the Ben Zannouch Flap structure.The definition of gravitational collapse structures for the first time in Tunisia particularly in the northern flank of the Jebel Orbata is controlled by many principal structural conditions:fragmentation of the landslide surfaces,rheology and topography.Other regional factors can be distinguished in the Southern-Central Tunisian Atlas as the seismic activity of the pre-existing Gafsa fault reactivated during compressive phases and the weather conditions during the postglacial period. 展开更多
关键词 Southern-Central Tunisian Atlas gravitational collapses structures Paleo-slope Gafsa fault
下载PDF
Application of Newtonian approximate model to LIGO gravitational wave data processing
19
作者 吴洁 李瑾 蒋青权 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期192-199,共8页
With the observation of a series of ground-based laser interferometer gravitational wave(GW)detectors such as LIGO and Virgo,nearly 100 GW events have been detected successively.At present,all detected GW events are g... With the observation of a series of ground-based laser interferometer gravitational wave(GW)detectors such as LIGO and Virgo,nearly 100 GW events have been detected successively.At present,all detected GW events are generated by the mergers of compact binary systems and are identified through the data processing of matched filtering.Based on matched filtering,we use the GW waveform of the Newtonian approximate(NA)model constructed by linearized theory to match the events detected by LIGO and injections to determine the coalescence time and utilize the frequency curve for data fitting to estimate the parameters of the chirp masses of binary black holes(BBHs).The average chirp mass of our results is 22.05_(-6.31)^(+6.31)M_(⊙),which is very close to 23.80_(-3.52)^(+4.83)M_(⊙)provided by GWOSC.In the process,we can analyze LIGO GW events and estimate the chirp masses of the BBHs.This work presents the feasibility and accuracy of the low-order approximate model and data fitting in the application of GW data processing.It is beneficial for further data processing and has certain research value for the preliminary application of GW data. 展开更多
关键词 gravitational waves black holes matched filtering data fitting
下载PDF
Gravitational wave echoes from strange quark stars in the equation of state with density-dependent quark masses
20
作者 Jian‑Feng Xu Lei Cui +2 位作者 Zhen‑Yan Lu Cheng‑Jun Xia Guang‑Xiong Peng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期112-119,共8页
According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obta... According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obtained either by a simple bag model with artificially assigned sound velocity or by employing interacting strange quark matter(SQM)depicted by simple reparameterization and rescaling.In this study,we investigate GW echoes with EOSs for SQM in the framework of the equivparticle model with density-dependent quark masses and pairing effects.We conclude that strange quark stars(SQSs)can be sufficiently compact to possess a photon sphere capable of generating GW echoes with frequencies in the range of approximately 20 kHz.However,SQSs cannot account for the observed 72 Hz signal in GW170817 event.Furthermore,we determined that quark-pairing effects play a crucial role in enabling SQSs to satisfy the necessary conditions for producing these types of echoes. 展开更多
关键词 Strange quark star gravitational wave echoes Color-flavour-locked phase Strange quark matter
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部