期刊文献+
共找到1,334篇文章
< 1 2 67 >
每页显示 20 50 100
基于格拉姆角场和PCNN-GRU的换相失败诊断方法
1
作者 陈仕龙 俸春雨 +3 位作者 牛元有 彭程 毕贵红 赵四洪 《电力科学与工程》 2025年第1期13-22,共10页
高压直流输电作为一种高效的电力传输技术,其运行中的换相失败会导致直流电流迅速增加、直流电压急剧下降,对电网的安全稳定运行造成重大影响。针对换相失败,提出一种结合格拉姆角场(Gramian angular field,GAF)与并行卷积神经网络–门... 高压直流输电作为一种高效的电力传输技术,其运行中的换相失败会导致直流电流迅速增加、直流电压急剧下降,对电网的安全稳定运行造成重大影响。针对换相失败,提出一种结合格拉姆角场(Gramian angular field,GAF)与并行卷积神经网络–门控循环单元(Parallel convolutional neural network-gated recurrent unit,PCNN-GRU)的换相失败诊断方法。利用GAF将一维时间序列信号转换为二维图像特征图,保留信号的时序信息。再利用PCNN-GRU模型的卷积神经网络的特征提取能力和门控循环单元的时序特征处理能力,使模型学习更多的故障特征,提高模型的诊断性能。以永富直流输电系统为对象,实验结果表明该方法诊断精度为99.33%,有较强的多特征提取能力和时序特性分析能力,诊断性能强,响应及识别换相失败快速。 展开更多
关键词 高压直流输电 换相失败 格拉姆角场 PCNN-gru 故障诊断 深度学习
下载PDF
一种基于注意力机制的BERT-CNN-GRU检测方法
2
作者 郑雅洲 刘万平 黄东 《计算机工程》 北大核心 2025年第1期258-268,共11页
针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU... 针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU)提取域名深度特征。CNN使用n-gram排布的方式提取不同层次的域名信息,并采用批标准化(BN)对卷积结果进行优化。GRU能够更好地获取前后域名的组成差异,多头注意力机制在捕获域名内部的组成关系方面表现出色。将并行检测网络输出的结果进行拼接,最大限度地发挥两种网络的优势,并采用局部损失函数聚焦域名分类问题,提高分类性能。实验结果表明,该方法在二分类上达到了最优效果,在短域名多分类数据集上15分类的加权F1值达到了86.21%,比BiLSTM-Seq-Attention模型提高了0.88百分点,在UMUDGA数据集上50分类的加权F1值达到了85.51%,比BiLSTM-Seq-Attention模型提高了0.45百分点。此外,该模型对变体域名和单词域名生成算法(DGA)检测性能较好,具有处理域名数据分布不平衡的能力和更广泛的检测能力。 展开更多
关键词 恶意短域名 BERT预训练 批标准化 注意力机制 门控循环单元 并行卷积神经网络
下载PDF
基于3DGRU-EKF的锂电池SOC估算
3
作者 丁蒋诚 余先涛 +1 位作者 伍晨阳 何嘉鹏 《自动化与仪表》 2025年第1期1-5,10,共6页
电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算... 电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算法。首先使用二阶RC电池等效模型,利用复合脉冲功率特性测试(HPPC)进行电池参数辨识;随后对电池模型进行状态空间方程的建立,并利用EKF算法进行更新迭代来估算电池的SOC,可以得到卡尔曼增益与SOC估算误差;最后将2个量结合HPPC工况下的电压与电流作为3DGRU网络的输入,真实的SOC作为输出来训练神经网络。实验结果表明,提出的3DGRU?鄄EKF算法估算SOC的均方根误差(RMSE)与平均绝对误差(MAE)均小于0.5%,具有良好的效果。 展开更多
关键词 锂电池 荷电状态 扩展卡尔曼滤波 门控循环神经网络
下载PDF
基于CNN与BiGRU融合的无线传感器网络数据聚合方法
4
作者 任金金 任敬敏 +1 位作者 王淑芳 赵慧芳 《长江信息通信》 2024年第2期114-116,共3页
由于缺乏对无线传感器网络数据特征的综合分析,导致数据聚合延迟偏高,为此,提出基于CNN与BiGRU融合的无线传感器网络数据聚合方法研究。引入了CNN实现对无线传感器网络数据全局以及结构特征的提取,其中,CNN的两个特征提取分支分别对原... 由于缺乏对无线传感器网络数据特征的综合分析,导致数据聚合延迟偏高,为此,提出基于CNN与BiGRU融合的无线传感器网络数据聚合方法研究。引入了CNN实现对无线传感器网络数据全局以及结构特征的提取,其中,CNN的两个特征提取分支分别对原始数据的全局状态和信息结构进行特征提取。在对长短期记忆网络(LSTM)进行改进的基础上,将门控循环单元网络—BiGRU引入到无线传感器网络数据的聚合研究中,利用前向GRU网络,和后向GRU网络对接无线传感器网络数据特征,实现对数据的有效聚合。在测试结果中,设计方法对于不同规模无线传感器网络数据的聚合延迟稳定在6.5s以内,处于较低水平。 展开更多
关键词 CNN与Bigru融合 无线传感器网络数据 数据聚合 特征提取 前向gru网络 后向gru网络
下载PDF
基于GRU-CNN双网络输出构建BP模型的径流预测方法 被引量:1
5
作者 张玥 姜中清 +2 位作者 周伊 周静姝 王宇露 《水力发电》 CAS 2024年第6期17-22,共6页
提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预... 提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预测。首先,构建GRU和CNN深度学习网络,同步输出2条径流预测序列;其次,在已知时段内,构建2条预测结果与实测值之间的多变量BP模型;最后,基于双网络输出预测值,通过确定的BP模型输出径流预测结果。经测试,该方法给预测时段提供了可靠的先验样本,高效学习了网络输出与真实值之间关系,预测精度显著提升。 展开更多
关键词 洪水预报 径流预测 双网络输出 gru CNN BP神经网络
下载PDF
基于GRU和LSTM组合模型的车联网信道分配方法 被引量:1
6
作者 王磊 王永华 +1 位作者 何一汕 伍文韬 《电讯技术》 北大核心 2024年第2期273-280,共8页
针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型... 针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。 展开更多
关键词 车联网(IoV) 信道分配 深度双重Q学习 gru-LSTM组合模型
下载PDF
基于Transformer-GRU并行网络的滚动轴承剩余寿命预测 被引量:1
7
作者 唐贵基 刘叔杭 +3 位作者 陈锦鹏 徐振丽 田寅初 徐鑫怡 《机床与液压》 北大核心 2024年第19期188-195,共8页
为有效描述滚动轴承性能退化趋势和准确预测其剩余寿命,提出一种基于多域特征融合的Transformer-GRU并行网络的滚动轴承剩余寿命预测方法。建立评价指标对滚动轴承振动信号的时域、频域和时频域等多域特征进行筛选,得到评分高的敏感特征... 为有效描述滚动轴承性能退化趋势和准确预测其剩余寿命,提出一种基于多域特征融合的Transformer-GRU并行网络的滚动轴承剩余寿命预测方法。建立评价指标对滚动轴承振动信号的时域、频域和时频域等多域特征进行筛选,得到评分高的敏感特征,获得退化特征集。利用自编码对退化特征集进行降维,减少数据复杂度和冗余度,得到滚动轴承的退化曲线。最后,利用Transformer-GRU并行网络进行剩余寿命预测,并将该方法运用到公开的轴承数据集分析中。结果表明:Transformer-GRU并行网络不仅可以高效准确地捕捉输入序列中的长期依赖关系,还能更好地处理时间序列之间的特征;该方法可以有效地预测滚动轴承剩余寿命,相比LSTM、GRU等经典方法更具优越性和泛化性。 展开更多
关键词 滚动轴承 剩余寿命预测 多域特征融合 TRANSFORMER gru
下载PDF
基于CEEMDAN-GRU组合模型的碳排放交易价格预测研究
8
作者 傅魁 钱素彬 徐尚英 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第1期62-66,共5页
准确的碳价格预测有助于监管部门观测碳交易市场运行状况及投资者进行科学决策,对实现碳达峰和碳中和具有重要作用。但碳价序列具有非线性、非平稳性和高噪声的特性,很难对其进行准确预测。将完全自适应噪声集合经验模态分解(CEEMDAN)... 准确的碳价格预测有助于监管部门观测碳交易市场运行状况及投资者进行科学决策,对实现碳达峰和碳中和具有重要作用。但碳价序列具有非线性、非平稳性和高噪声的特性,很难对其进行准确预测。将完全自适应噪声集合经验模态分解(CEEMDAN)方法与门控循环单元(GRU)相结合,构建一个碳排放交易价格预测模型。该模型基于分解、集成思想,利用CEEMDAN将原始碳价序列分解,获得不同频率的本征模函数(IMF)和残差序列,使用GRU神经网络分别为各子序列建立预测模型,最后集成预测结果得到碳价预测值。以湖北省碳交易市场的日度成交价为例进行实证分析,结果表明:相较于其他5种基准模型,CEEMDAN-GRU模型具有更小的预测误差和更高的拟合优度,在碳价格预测上具有一定的优势。 展开更多
关键词 碳价格预测 组合模型 CEEMDAN gru 机器学习
下载PDF
基于GRU神经网络的电动汽车IGBT模块剩余寿命预测研究
9
作者 李新宇 孟子民 +1 位作者 盛光鸣 刘志峰 《中国测试》 CAS 北大核心 2024年第11期25-32,共8页
为获取老旧电动汽车中拆解的绝缘栅双极型晶体管(IGBT)模块在再制造时的剩余寿命,提出经典循环神经网络的变体,即GRU神经网络的IGBT模块剩余寿命预测模型。分析IGBT模块的内部结构及老化失效机理,明确老化失效的具体形式,结合IGBT模块... 为获取老旧电动汽车中拆解的绝缘栅双极型晶体管(IGBT)模块在再制造时的剩余寿命,提出经典循环神经网络的变体,即GRU神经网络的IGBT模块剩余寿命预测模型。分析IGBT模块的内部结构及老化失效机理,明确老化失效的具体形式,结合IGBT模块功率循环试验的老化数据,确定通态饱和压降作为模块老化失效特征量。通过试验构建最优参数的GRU神经网络剩余寿命预测模型,完成对老化失效特征量的预测,并与同样是经典循环神经网络另一种变体LSTM网络预测模型进行对比。结果表明:经过优化参数的GRU网络模型的均方根误差为0.0046,平均绝对误差为0.0041,决定系数为99.96%,相对LSTM网络精度更高,更适合所选IGBT模块的剩余寿命预测,同时检测的时间成本更低,更能提高IGBT模块再制造时的检测与生产效率。 展开更多
关键词 绝缘栅双极型晶体管 gru 神经网络 剩余寿命预测
下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测
10
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(ARIMA) 广义的自回归条件异方差模型(GARCH) 门控循环单元(gru)
下载PDF
基于GRU-XGBoost的短期风电功率预测研究 被引量:1
11
作者 耿运涛 《船电技术》 2024年第7期32-35,共4页
本文利用自适应噪声的完备经验模态分解(CEEMDAN)对风电原始序列信号进行处理后,采用GRU-XGBoost模型对非线性、非平稳的功率序列进行建模和预测,以提升模型的预测能力和泛化性。首先,通过CEEMDAN将风电功率原始序列分解为不同时间尺度... 本文利用自适应噪声的完备经验模态分解(CEEMDAN)对风电原始序列信号进行处理后,采用GRU-XGBoost模型对非线性、非平稳的功率序列进行建模和预测,以提升模型的预测能力和泛化性。首先,通过CEEMDAN将风电功率原始序列分解为不同时间尺度的分量,然后将分解后的信号输入GRU神经网络生成预测信号,最后通过XGBoost进行校正。通过与多种预测模型进行比较,证明了该模型在预测精度方面的卓越表现。 展开更多
关键词 自适应噪声 风电功率 建模和预测 gru神经网络
下载PDF
基于IGWO-Attention-GRU的短期电力负荷预测模型
12
作者 徐利美 贺卫华 +2 位作者 李远 朱燕芳 续欣莹 《信息技术》 2024年第12期101-108,共8页
为了提高短期电力负荷的预测精度,针对电力负荷序列波动性强、复杂性高的特点,综合考虑气象因素及日期类型的影响,文中提出一种基于改进灰狼优化算法(IGWO)优化Attention-GRU网络的短期电力负荷预测模型。首先,构建Attention-GRU网络;其... 为了提高短期电力负荷的预测精度,针对电力负荷序列波动性强、复杂性高的特点,综合考虑气象因素及日期类型的影响,文中提出一种基于改进灰狼优化算法(IGWO)优化Attention-GRU网络的短期电力负荷预测模型。首先,构建Attention-GRU网络;其次,对灰狼优化算法(GWO)进行改进,并利用IGWO寻找Attention-GRU网络的超参数;最后,使用IGWO-Attention-GRU模型在电力负荷数据集上进行实验,并与多种预测模型进行比较。实验结果表明,IGWO-Attention-GRU模型的MAPE、RMSE和MAE值均为各种预测模型中最低,验证了IGWO-Attention-GRU模型的优越性。 展开更多
关键词 短期电力负荷预测 gru网络 Attention机制 改进灰狼优化算法 超参数寻优
下载PDF
基于Swin Transformer与GRU的低温贮藏番茄成熟度识别与时序预测研究
13
作者 杨信廷 刘彤 +2 位作者 韩佳伟 郭向阳 杨霖 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期213-220,共8页
面向绿熟番茄采后持续转熟特征,适时调温是满足不同成熟度番茄适宜贮运温度需求的关键,而果实成熟度自动识别与动态预测则是实现温度适时调控的基础条件。本文基于Swin Transformer与改进GRU提出了一种番茄成熟度识别与时序动态预测模型... 面向绿熟番茄采后持续转熟特征,适时调温是满足不同成熟度番茄适宜贮运温度需求的关键,而果实成熟度自动识别与动态预测则是实现温度适时调控的基础条件。本文基于Swin Transformer与改进GRU提出了一种番茄成熟度识别与时序动态预测模型,首先通过融合番茄两侧图像获取番茄表观全局红色总占比,构建不同成熟番茄图像数据集,并基于迁移学习优化Swin Transformer模型初始权重配置,实现番茄成熟度分类识别;其次,周期性采集不同储藏温度(4、9、14℃)下番茄图像数据,结合番茄初始颜色特征与贮藏环境信息,构建基于Swin Transformer与GRU的番茄成熟度时序预测模型,并融合时间注意力模块优化模型预测精度;最后,对比分析不同模型预测结果,验证本研究所提模型的准确性与优越性。结果表明,番茄成熟度正确识别率为95.783%,相比VGG16、AlexNet、ResNet50模型,模型正确识别率分别提升2.83%、3.35%、12.34%。番茄成熟度时序预测均方误差(MSE)为0.225,相比原始GRU、LSTM、BiGRU模型MSE最高降低29.46%。本研究为兼顾番茄成熟度实现贮藏温度柔性适时调控提供了关键理论基础。 展开更多
关键词 番茄 低温贮藏 成熟度识别 时序预测模型 Swin Transformer gru
下载PDF
基于LSTM-GRU神经网络的机床主轴回转误差分离降噪研究
14
作者 迟玉伦 李希铭 +1 位作者 朱文博 余建华 《计量学报》 CSCD 北大核心 2024年第11期1615-1625,共11页
频域三点法是分离主轴回转误差的常用方法,其误差分离精度受被测信号中噪声的影响较大,不适当的降噪方法会使测试结果失真。为此,提出了基于LSTM-GRU神经网络的机床主轴回转误差分离降噪方法。首先,使用经遗传算法优化的传感器夹角搭建... 频域三点法是分离主轴回转误差的常用方法,其误差分离精度受被测信号中噪声的影响较大,不适当的降噪方法会使测试结果失真。为此,提出了基于LSTM-GRU神经网络的机床主轴回转误差分离降噪方法。首先,使用经遗传算法优化的传感器夹角搭建测试系统并对主轴回转误差进行数据信号采集。然后,配置卡尔曼滤波器对3个传感器信号进行降噪,通过三点法分离出同步误差和异步误差。最后,使用LSTM-GRU模型分别对同步误差和异步误差降噪,并将该模型降噪结果与LSTM-LSTM双层神经网络降噪、卡尔曼滤波和小波阈值降噪和结果对比,分别计算其Allan方差来评价不同方法的降噪效果。实验结果显示,使用该LSTM-GRU模型降噪后的同步误差Allan方差为2.014×10^(-8)mm^(2),异步误差Allan方差为3.967×10^(-8)mm^(2),均小于卡尔曼滤波、小波阈值降噪和LSTM-LSTM双层神经网络降噪结果。LSTM-GRU模型的降噪效果最优,被测主轴在转速为6000 r/min时的同步误差为2.42μm,异步误差为3.21μm,符合实际情况。 展开更多
关键词 几何量计量 主轴回转误差 频域三点法 LSTM-gru 传感器夹角优化
下载PDF
基于CNN-GRU-LightGBM模型的单井产量预测方法
15
作者 杨莉 周子希 +1 位作者 王婷婷 王艳铠 《科学技术与工程》 北大核心 2024年第18期7606-7614,共9页
单井日产量趋势预测研究在油田生产中具有重要意义。由于油井生产工况复杂,难以准确预测日产量,建立了基于多变量时序数据的产量模型。基于卷积门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)提取深层特征进... 单井日产量趋势预测研究在油田生产中具有重要意义。由于油井生产工况复杂,难以准确预测日产量,建立了基于多变量时序数据的产量模型。基于卷积门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)提取深层特征进行时序预测,基于梯度提升框架的集成模型(light gradient boosting machine,LightGBM)从回归预测角度进行预测,两者结果相互融合,进一步提高产量预测精度。同时,提出了一种可以实现多变量时序预测或回归预测模型在未知输入特征情况下准确预测产量的方法—超前参数递归预测策略。采用该方法对影响产量的重要特征进行超前预测,并将预测到的重要特征应用于预测产量的仿真测试中。仿真结果表明:本文模型与超前参数递归策略配合最好,在测试集上的预测准确度最高。相比单变量时序预测和回归预测模型,可显著提高预测精度。 展开更多
关键词 单井产量预测 超前参数预测 CNN-gru LightGBM
下载PDF
基于K_means++聚类与RF_GRU组合模型的电力负荷预测方法研究
16
作者 刘明 尚尚 《计算机与数字工程》 2024年第6期1662-1667,1702,共7页
短期负荷预测是电力系统对负荷进行规划的重要依据之一,为了进一步提升短期负荷预测的精度,提出一种基于K_means++聚类与RF_GRU组合模型的电力负荷预测方法。首先,采用K_means++聚类算法将负荷群体分成负荷特性相近的群体,然后利用改进... 短期负荷预测是电力系统对负荷进行规划的重要依据之一,为了进一步提升短期负荷预测的精度,提出一种基于K_means++聚类与RF_GRU组合模型的电力负荷预测方法。首先,采用K_means++聚类算法将负荷群体分成负荷特性相近的群体,然后利用改进后的CSO算法优化随机森林中的相关参数使其性能最优,接着根据聚类情况采用随机森林选择结构不同的多层GRU网络分别对各组负荷群体进行预测,最后将所有组的预测结果相加得出最终预测值。算例结果表明,聚类算法的归纳整理功能为预测方法节省了预测时间,而采用组合模型又进一步提高了预测精度。 展开更多
关键词 短期负荷预测 K_means++ gru 随机森林算法
下载PDF
基于深度学习的LSTM-GRU复合模型矿井涌水量预测方法研究
17
作者 连会青 李启兴 +5 位作者 王瑞 夏向学 张庆 黄亚坤 任正瑞 康佳 《煤矿安全》 CAS 北大核心 2024年第9期166-172,共7页
为了解决矿井涌水预测问题,引入深度学习理论,将长短期记忆网络(LSTM)和门控循环单元(GRU)进行结合,选取矿井涌水量为研究对象,建立一种LSTM-GRU的矿井涌水预测模型。以陕西某矿的矿井涌水量为样本数据,采用7∶3的比例将数据集划分为训... 为了解决矿井涌水预测问题,引入深度学习理论,将长短期记忆网络(LSTM)和门控循环单元(GRU)进行结合,选取矿井涌水量为研究对象,建立一种LSTM-GRU的矿井涌水预测模型。以陕西某矿的矿井涌水量为样本数据,采用7∶3的比例将数据集划分为训练集和测试集,选择模型训练效果较好的梯度下降算法确定网络模型参数和正则化参数,为了证明LSTM-GRU模型的预测精度,同时将结果分别与传统的ARIMA模型和LSTM模型预测矿井涌水所得到的预测结果进行对比。结果表明:LSTM-GRU复合模型的平均绝对百分比误差(RMSE)为70.51,均方根误差(MAE)为53.4,平均绝对误差(MAPE)为2.80%,可决系数(R^(2))为0.86,具有较高的预测精度和可靠性,预测效果优于传统的ARIMA模型和LSTM模型。 展开更多
关键词 矿井防治水 矿井涌水量预测 LSTM-gru网络模型 ARIMA模型 LSTM模型
下载PDF
基于SABO-GRU-Attention的锂电池SOC估计
18
作者 薛家祥 王凌云 《电源技术》 CAS 北大核心 2024年第11期2169-2173,共5页
提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation... 提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。 展开更多
关键词 SOC估计 SABO算法 gru神经网络 Attention机制
下载PDF
SARIMA-GRU组合模型的水位预测
19
作者 曹寒问 陈九江 李小玲 《南昌工程学院学报》 CAS 2024年第3期8-12,共5页
相较于传统的单一模型,组合模型在一定条件下具有更优的预测精度。为验证组合模型是否有利于提高模型的预测精度,本文以长江中游支流澧水石龟山水电站的水位数据为基础,建立SARIMA模型和GRU神经网络模型,并将这两种模型基于方差倒数法和... 相较于传统的单一模型,组合模型在一定条件下具有更优的预测精度。为验证组合模型是否有利于提高模型的预测精度,本文以长江中游支流澧水石龟山水电站的水位数据为基础,建立SARIMA模型和GRU神经网络模型,并将这两种模型基于方差倒数法和IOWA算子进行组合,最后比较单一模型和组合模型在该水位数据集上的预测精度差异。结果表明,适当的组合方式有利于提高模型预测精度,基于IOWA算子的组合模型具优良的预测性能。 展开更多
关键词 SARIMA gru神经网络 水位预测 组合模型
下载PDF
基于GRU的密集连接时空图注意力网络的城市交通预测
20
作者 郭海锋 许宏伟 周子盛 《高技术通讯》 CAS 北大核心 2024年第5期463-474,共12页
城市道路拓扑结构的复杂性、交通流量的实时变化以及多元的外部环境等因素给交通预测带来了极大的困难。现有方法对交通路网的时空特征挖掘性不足,缺乏对外部因素的考虑,为此本文提出了一种基于门控循环单元(GRU)的时空图注意力密集连... 城市道路拓扑结构的复杂性、交通流量的实时变化以及多元的外部环境等因素给交通预测带来了极大的困难。现有方法对交通路网的时空特征挖掘性不足,缺乏对外部因素的考虑,为此本文提出了一种基于门控循环单元(GRU)的时空图注意力密集连接网络,通过门控循环单元来捕获路网数据的动态规律,并以图注意力密集连接网络来提取路网复杂的空间结构特征,建立城市交通网络对时空的依赖关系。针对外部客观因素,采用独热编码的方式对城市各路段发生的交通事件进行数据建模,增强交通网络的信息属性。以杭州申花路及周围共309个路段为例,对所提出模型的预测能力和可行性进行验证。实验结果表明,模型预测精度最高达到了81.64%,与传统数学模型和主流的神经网络模型对比,预测精度较ARIMA提高了35.42%,较图注意力网络(GAT)和GRU神经网络分别提高了17.45%和3.02%。实验证明该方法可以适应复杂的交通流进行长期的交通预测任务,同时也能增强交通管理能力,减少交通拥堵成本。 展开更多
关键词 交通预测 时空特征 神经网络 门控循环单元(gru) 密集连接 图注意力网络(GAT)
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部