电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算...电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算法。首先使用二阶RC电池等效模型,利用复合脉冲功率特性测试(HPPC)进行电池参数辨识;随后对电池模型进行状态空间方程的建立,并利用EKF算法进行更新迭代来估算电池的SOC,可以得到卡尔曼增益与SOC估算误差;最后将2个量结合HPPC工况下的电压与电流作为3DGRU网络的输入,真实的SOC作为输出来训练神经网络。实验结果表明,提出的3DGRU?鄄EKF算法估算SOC的均方根误差(RMSE)与平均绝对误差(MAE)均小于0.5%,具有良好的效果。展开更多
针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型...针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。展开更多
提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation...提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。展开更多
文摘电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU?鄄EKF的改进SOC估算算法。首先使用二阶RC电池等效模型,利用复合脉冲功率特性测试(HPPC)进行电池参数辨识;随后对电池模型进行状态空间方程的建立,并利用EKF算法进行更新迭代来估算电池的SOC,可以得到卡尔曼增益与SOC估算误差;最后将2个量结合HPPC工况下的电压与电流作为3DGRU网络的输入,真实的SOC作为输出来训练神经网络。实验结果表明,提出的3DGRU?鄄EKF算法估算SOC的均方根误差(RMSE)与平均绝对误差(MAE)均小于0.5%,具有良好的效果。
文摘针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。
文摘提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。