The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangj...The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North section. The section is located near Wangjiawan village, 42 km north of Yichang city (western Hubei, China), at 30° 58′56″N and 111° 25′10″E. The GSSP level coincides with the first appearance of the graptolite species Normalograptus extraordinarius (Sobolevskaya). Secondary markers include the onset of a positive carbon-isotope excursion, and a slightly earlier first appearance of Normalograptus ojsuensis ( Koren and Mikhailova ). The Wangjiawan North section possesses continuity of sedimentation and biozonation with completeness of exposures, abundant and well-preserved graptolites and shelly fossils, i. e. the Hirnantia- Dalmanitina shelly fauna which is a key element for recognition of the Hirnantian Stage. The Wangjiawan North, South and Riverside sections possess favorable facies and widespread correlation potential, are free from structure complication, metamorphism and other alteration, and have good accessibility. The Riverside section in particular possesses amenability to isotopic age determination. The beginning of the Hirnantian was followed by a global episode of a major extinction event, which happened in the Diceratograptus mirus Subzone. The proposal was voted by the International Subcommission on Ordovician Stratigraphy in October, 2004, approved by the International Commission on Stratigraphy in February, 2006, and ratified by the International Union of Geological Sciences in May, 2006.展开更多
The Huanghuachang section near Yichang, southern China meets the requirements of Global Stratotype Section and Point (GSSP) for the base of the Middle Ordovician Series and the yet-to-be-named third stage of the Ordov...The Huanghuachang section near Yichang, southern China meets the requirements of Global Stratotype Section and Point (GSSP) for the base of the Middle Ordovician Series and the yet-to-be-named third stage of the Ordovician System (or lower stage of Middle Ordovician Series). The conodont succession at the section is complete across the Lower to Middle Ordovician series boundary and several excellent phylogenetic lineages of Baltoniodus, Trapezognathus, Periodon, and Microzarkodina are represented. The definition of the base of the Middle Ordovician is proposed to be the first appearance datum (FAD) of Baltoniodus? triangularis in the section. It is followed closely by the FAD of Microzarkodina flabellum, which is taken as a reasonable proxy for the boundary. This level approximates the boundary between the lower and upper intervals of the Azygograptus suecicus graptolite Biozone, and nearly coincides with the base of the Belonechitina henryi chitinozoan Biozone.The proposed GSSP for the base of the international Middle Ordovician Series is located in a roadside exposure at the base of Bed (SHod) 16, 10.57 m above the base of the Dawan Formation in the measured Huanghuachang section near Yichang City, southern China. The same faunal succession is also recorded from the Chenjiahe (formerly Daping) section, 5 km to the north of the Huanghuachang section. The proposed boundary horizon can be recognized and correlated globally with high precision in both relatively shallow-water carbonate facies as well as in deep-water graptolite facies.展开更多
The Global boundary Stratotype Section and Point (GSSP) for the base of the Ladinian Stage (Middle Triassic) is defined in the Caffaro river bed (45°49'09.5"N, 10°28'15.5"E), south of the village o...The Global boundary Stratotype Section and Point (GSSP) for the base of the Ladinian Stage (Middle Triassic) is defined in the Caffaro river bed (45°49'09.5"N, 10°28'15.5"E), south of the village of Bagolino (Province of Brescia, northern Italy), at the base of a 15-20-cm-thick limestone bed overlying a distinct groove ("Chiesense groove ") of limestone nodules in a shaly matrix, located about 5 m above the base of the Buchenstein Formation. The lower surface of the thick limestone bed has the lowest occurrence of the ammonoid Eoprotrachyceras curionii (base of the E. curionii Zone; onset of the Trachyceratidae ammonoid family). Secondary global markers in the uppermost Anisian include the lowest occurrence of conodont Neogondolella praehungafica and a brief normal-polarity magnetic zone recognized in closely correlated sections including the principal auxiliary section at Seceda in the Dolomites. The GSSP-level is bracketed by U-Pb single zircon age data from volcaniclastic horizons, indicating a boundary age of ca 241 Ma.展开更多
Diabasbrottet, selected by the International Subcommisson on Ordovician Stratigraphy and in 2002 ratified by the International Commission on Stratigraphy as the GSSP of the Second (Upper) Stage of the Lower Ordovician...Diabasbrottet, selected by the International Subcommisson on Ordovician Stratigraphy and in 2002 ratified by the International Commission on Stratigraphy as the GSSP of the Second (Upper) Stage of the Lower Ordovician, is located on the Hunneberg Mountain in southwestern Sweden. The stratigraphic succession represents an outer shelf environment near the Baltic Shield margin. The shale-dominated, biostratigraphically complete, richly fossiliferous boundary interval is completely exposed in a disused quarry. The GSSP is in the lower TФyen Shale 2.1 m above the top of the Cambrian and is marked by the first appearance of the graptolite Tetragraptus approximatus Nicholson. The boundary interval contains a diverse graptolite fauna and biostratigraphically diagnostic conodonts and trilobites that make it possible to define the boundary in terms of zone schemes based on these groups. In this respect, the Diabasbrottet and nearby sections are unique in the world among described localities having this boundary interval. Based on the appearance of T. approximatus, the base of the Second Stage can be identified in many graptolitiferous successions round the world but this level is currently more difficult to recognize precisely in some carbonate sequences outside Baltoscandia. We propose the Second Stage be called the Floan Stage. It is named for the Village of Flo, which is situated about 5 km southeast of the GSSP.展开更多
The GSSP of the Tortonian Stage, which per definition marks the base of the Tortonian and, hence, the boundary between the Serravallian and Tortonian Stages of the Middle and Upper Miocene Subseries, has recently been...The GSSP of the Tortonian Stage, which per definition marks the base of the Tortonian and, hence, the boundary between the Serravallian and Tortonian Stages of the Middle and Upper Miocene Subseries, has recently been defined and ratified by the IUGS. The boundary stratotype-section is Monte dei Corvi (Italy) where the Tortonian GSSP is now formally at the mid-point of the sapropel of small-scale sedimentary cycle no. 76, close to the last common occurrences (LCOs) of the calcareous nannofossil Discoaster kugleri and the planktonic foraminifer Globigerinoides subquadratus and associated with the short normal subchron C5r.2n. The GSSP level coincides closely with oxygen isotope event Mi-5 and the associated glacio-eustatic sea-level low-stand of supercycle T3.1 and concurrent deep-sea hiatus NH4,and is dated astronomically at 11.608 Ma. The Monte Gibliscemi section is accepted as an auxiliary boundary stratotype because the better preservation of the calcareous microfossils in this section enables quantitative analyses and the construction of a stable isotope record.展开更多
The Meishan Section of Changxing County, Zhejiang Province, China and the base of its Bed 27c,in which Hindeodus parvus first occurs, are recommended as the GSSP of Permian-Triassic boundary (PTB).The present paper in...The Meishan Section of Changxing County, Zhejiang Province, China and the base of its Bed 27c,in which Hindeodus parvus first occurs, are recommended as the GSSP of Permian-Triassic boundary (PTB).The present paper introduces a description of the section. Biostratigraphic correlation with other famous sections shows the completeness of this section and justifies choice of H. Parvus as the index fossil. Chemostratigraphic investigation provides the δ ̄13C excursion and the moderate but inconsistent Ir spike as auxiliary symbols for the PTB. This boundary is closely related to transgression,anoxia,volcanism,mass extinction and possible impact events which can be correlated with those in South China and other parts of the world .展开更多
In this issue, Rowland & Hicks advocate a nomenclature for the four epochs of the Cambrian Period that carries over the terms Early, Middle, and Late Cambrian from previous usage (but with new definitions) and intr...In this issue, Rowland & Hicks advocate a nomenclature for the four epochs of the Cambrian Period that carries over the terms Early, Middle, and Late Cambrian from previous usage (but with new definitions) and introduces a non-geographically-based term, Ichnocambrian, for the earliest Cambrian epoch. The terms Lower/Early, Middle, and Late/Upper Cambrian are confusing because they connote the second, third, and fourth epochs/series of the period/system, and because each is defined in a way that is different from traditional definitions of those intervals. The use of these terms will ultimately lead to confusion between older concepts of Early, Middle, and Late Cambrian and newer, refined concepts of the epochs. The philosophy of the International Subcommission on Cambrian Stratigraphy for establishing a clear subdivision of the Cambrian on a global scale is unambiguous: stratigraphic terms previously in use lack global applicability and should not be adopted as chronostratigraphic/geochronologic units in the developing global stratigraphic chart of the Cambrian. Moreover, all series and stage names should be GSSP (stratotype section)-based.展开更多
Following votes by the Pliensbachian Working Group, the Jurassic Subcommission and the International Commission on Stratigraphy, lUGS ratified the proposed Global Boundary Stratotype Section and Point (GSSP) for the...Following votes by the Pliensbachian Working Group, the Jurassic Subcommission and the International Commission on Stratigraphy, lUGS ratified the proposed Global Boundary Stratotype Section and Point (GSSP) for the base of the Pliensbachian Stage (Lower Jurassic) at the base of bed 73b in the Wine Haven section, Robin Hood's Bay, Yorkshire Coast, UK. This level contains the characteristic ammonite association Bifericeras donovani Dommergues and Meister and Apoderoceras sp. Complementary data include: a) Strontium-isotope stratigraphy, based on analysis of belemnites which yield a calcite 87Sr/^86Sr ratio for the boundary level of 0. 707425 and data supporting interpretation of continuous sedimentation; b) Belemnite oxygen-isotope data indicate a significant temperature drop (-5 ℃) across the boundary at this locality; c) A Transgressive Systems Tract (TST) initiated in the Aplanaturn Subzone (uppermost Sinemurian) continues into the Lowermost Pliensbachian (Taylori Subzone); it forms part of a transgressive facies cycle sensu Graciansky et al. (1998); d) The Upper Sinemurian to lowermost Plensbachian at Wine Haven section has a predominantly norreal magnetic polarity, but two discrete reversed polarity magnetozones are present. The first spans much of the latest Sinemurian Aplanatum Subzone. It terminates 〈0.5m below the Sinemurian-Pliensbachian boundary and may prove a valuable chronostratigraphic marker The second extends from the latest Oxynotum Subzone probably through to the lower part of the Raricostatum Subzone.展开更多
Through a detailed study of sequence boundaries, it is concluded that sequence stratigraphy is an independent regional and transitional stratigraphic system between local lithostratigraphy and global chronostratigraph...Through a detailed study of sequence boundaries, it is concluded that sequence stratigraphy is an independent regional and transitional stratigraphic system between local lithostratigraphy and global chronostratigraphy. Therefore, a new tripartite stratigraphic classification scheme has been proposed. By combining organically the concept of sequence boundaries with the GSSP, it is suggested that the GSSP should be chosen in a conformale portion of a related sequence boundary, and the boundary established in light of this concept is defined as the Best Natural Boundary (BNB). The definition of the BNB points out the working area and stratigraphic level for the GSSP. By referring to a case study of the Permian Guadalupian/Lopingian boundary, the concept of the BNB has been elaborated in detail, and it is proposed that the BNB of the Guadalupian and the Lopingian lies between the Mesogondolella granti Zone and the Ctarkina postbitteri Zone, which is also the sequence chronostratigraphic boundary between the Transpecos composite sequence (chronozone)and the UAA- 1 composite sequence (chronozone).展开更多
文摘The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North section. The section is located near Wangjiawan village, 42 km north of Yichang city (western Hubei, China), at 30° 58′56″N and 111° 25′10″E. The GSSP level coincides with the first appearance of the graptolite species Normalograptus extraordinarius (Sobolevskaya). Secondary markers include the onset of a positive carbon-isotope excursion, and a slightly earlier first appearance of Normalograptus ojsuensis ( Koren and Mikhailova ). The Wangjiawan North section possesses continuity of sedimentation and biozonation with completeness of exposures, abundant and well-preserved graptolites and shelly fossils, i. e. the Hirnantia- Dalmanitina shelly fauna which is a key element for recognition of the Hirnantian Stage. The Wangjiawan North, South and Riverside sections possess favorable facies and widespread correlation potential, are free from structure complication, metamorphism and other alteration, and have good accessibility. The Riverside section in particular possesses amenability to isotopic age determination. The beginning of the Hirnantian was followed by a global episode of a major extinction event, which happened in the Diceratograptus mirus Subzone. The proposal was voted by the International Subcommission on Ordovician Stratigraphy in October, 2004, approved by the International Commission on Stratigraphy in February, 2006, and ratified by the International Union of Geological Sciences in May, 2006.
文摘The Huanghuachang section near Yichang, southern China meets the requirements of Global Stratotype Section and Point (GSSP) for the base of the Middle Ordovician Series and the yet-to-be-named third stage of the Ordovician System (or lower stage of Middle Ordovician Series). The conodont succession at the section is complete across the Lower to Middle Ordovician series boundary and several excellent phylogenetic lineages of Baltoniodus, Trapezognathus, Periodon, and Microzarkodina are represented. The definition of the base of the Middle Ordovician is proposed to be the first appearance datum (FAD) of Baltoniodus? triangularis in the section. It is followed closely by the FAD of Microzarkodina flabellum, which is taken as a reasonable proxy for the boundary. This level approximates the boundary between the lower and upper intervals of the Azygograptus suecicus graptolite Biozone, and nearly coincides with the base of the Belonechitina henryi chitinozoan Biozone.The proposed GSSP for the base of the international Middle Ordovician Series is located in a roadside exposure at the base of Bed (SHod) 16, 10.57 m above the base of the Dawan Formation in the measured Huanghuachang section near Yichang City, southern China. The same faunal succession is also recorded from the Chenjiahe (formerly Daping) section, 5 km to the north of the Huanghuachang section. The proposed boundary horizon can be recognized and correlated globally with high precision in both relatively shallow-water carbonate facies as well as in deep-water graptolite facies.
文摘The Global boundary Stratotype Section and Point (GSSP) for the base of the Ladinian Stage (Middle Triassic) is defined in the Caffaro river bed (45°49'09.5"N, 10°28'15.5"E), south of the village of Bagolino (Province of Brescia, northern Italy), at the base of a 15-20-cm-thick limestone bed overlying a distinct groove ("Chiesense groove ") of limestone nodules in a shaly matrix, located about 5 m above the base of the Buchenstein Formation. The lower surface of the thick limestone bed has the lowest occurrence of the ammonoid Eoprotrachyceras curionii (base of the E. curionii Zone; onset of the Trachyceratidae ammonoid family). Secondary global markers in the uppermost Anisian include the lowest occurrence of conodont Neogondolella praehungafica and a brief normal-polarity magnetic zone recognized in closely correlated sections including the principal auxiliary section at Seceda in the Dolomites. The GSSP-level is bracketed by U-Pb single zircon age data from volcaniclastic horizons, indicating a boundary age of ca 241 Ma.
文摘Diabasbrottet, selected by the International Subcommisson on Ordovician Stratigraphy and in 2002 ratified by the International Commission on Stratigraphy as the GSSP of the Second (Upper) Stage of the Lower Ordovician, is located on the Hunneberg Mountain in southwestern Sweden. The stratigraphic succession represents an outer shelf environment near the Baltic Shield margin. The shale-dominated, biostratigraphically complete, richly fossiliferous boundary interval is completely exposed in a disused quarry. The GSSP is in the lower TФyen Shale 2.1 m above the top of the Cambrian and is marked by the first appearance of the graptolite Tetragraptus approximatus Nicholson. The boundary interval contains a diverse graptolite fauna and biostratigraphically diagnostic conodonts and trilobites that make it possible to define the boundary in terms of zone schemes based on these groups. In this respect, the Diabasbrottet and nearby sections are unique in the world among described localities having this boundary interval. Based on the appearance of T. approximatus, the base of the Second Stage can be identified in many graptolitiferous successions round the world but this level is currently more difficult to recognize precisely in some carbonate sequences outside Baltoscandia. We propose the Second Stage be called the Floan Stage. It is named for the Village of Flo, which is situated about 5 km southeast of the GSSP.
文摘The GSSP of the Tortonian Stage, which per definition marks the base of the Tortonian and, hence, the boundary between the Serravallian and Tortonian Stages of the Middle and Upper Miocene Subseries, has recently been defined and ratified by the IUGS. The boundary stratotype-section is Monte dei Corvi (Italy) where the Tortonian GSSP is now formally at the mid-point of the sapropel of small-scale sedimentary cycle no. 76, close to the last common occurrences (LCOs) of the calcareous nannofossil Discoaster kugleri and the planktonic foraminifer Globigerinoides subquadratus and associated with the short normal subchron C5r.2n. The GSSP level coincides closely with oxygen isotope event Mi-5 and the associated glacio-eustatic sea-level low-stand of supercycle T3.1 and concurrent deep-sea hiatus NH4,and is dated astronomically at 11.608 Ma. The Monte Gibliscemi section is accepted as an auxiliary boundary stratotype because the better preservation of the calcareous microfossils in this section enables quantitative analyses and the construction of a stable isotope record.
文摘The Meishan Section of Changxing County, Zhejiang Province, China and the base of its Bed 27c,in which Hindeodus parvus first occurs, are recommended as the GSSP of Permian-Triassic boundary (PTB).The present paper introduces a description of the section. Biostratigraphic correlation with other famous sections shows the completeness of this section and justifies choice of H. Parvus as the index fossil. Chemostratigraphic investigation provides the δ ̄13C excursion and the moderate but inconsistent Ir spike as auxiliary symbols for the PTB. This boundary is closely related to transgression,anoxia,volcanism,mass extinction and possible impact events which can be correlated with those in South China and other parts of the world .
文摘In this issue, Rowland & Hicks advocate a nomenclature for the four epochs of the Cambrian Period that carries over the terms Early, Middle, and Late Cambrian from previous usage (but with new definitions) and introduces a non-geographically-based term, Ichnocambrian, for the earliest Cambrian epoch. The terms Lower/Early, Middle, and Late/Upper Cambrian are confusing because they connote the second, third, and fourth epochs/series of the period/system, and because each is defined in a way that is different from traditional definitions of those intervals. The use of these terms will ultimately lead to confusion between older concepts of Early, Middle, and Late Cambrian and newer, refined concepts of the epochs. The philosophy of the International Subcommission on Cambrian Stratigraphy for establishing a clear subdivision of the Cambrian on a global scale is unambiguous: stratigraphic terms previously in use lack global applicability and should not be adopted as chronostratigraphic/geochronologic units in the developing global stratigraphic chart of the Cambrian. Moreover, all series and stage names should be GSSP (stratotype section)-based.
文摘Following votes by the Pliensbachian Working Group, the Jurassic Subcommission and the International Commission on Stratigraphy, lUGS ratified the proposed Global Boundary Stratotype Section and Point (GSSP) for the base of the Pliensbachian Stage (Lower Jurassic) at the base of bed 73b in the Wine Haven section, Robin Hood's Bay, Yorkshire Coast, UK. This level contains the characteristic ammonite association Bifericeras donovani Dommergues and Meister and Apoderoceras sp. Complementary data include: a) Strontium-isotope stratigraphy, based on analysis of belemnites which yield a calcite 87Sr/^86Sr ratio for the boundary level of 0. 707425 and data supporting interpretation of continuous sedimentation; b) Belemnite oxygen-isotope data indicate a significant temperature drop (-5 ℃) across the boundary at this locality; c) A Transgressive Systems Tract (TST) initiated in the Aplanaturn Subzone (uppermost Sinemurian) continues into the Lowermost Pliensbachian (Taylori Subzone); it forms part of a transgressive facies cycle sensu Graciansky et al. (1998); d) The Upper Sinemurian to lowermost Plensbachian at Wine Haven section has a predominantly norreal magnetic polarity, but two discrete reversed polarity magnetozones are present. The first spans much of the latest Sinemurian Aplanatum Subzone. It terminates 〈0.5m below the Sinemurian-Pliensbachian boundary and may prove a valuable chronostratigraphic marker The second extends from the latest Oxynotum Subzone probably through to the lower part of the Raricostatum Subzone.
文摘Through a detailed study of sequence boundaries, it is concluded that sequence stratigraphy is an independent regional and transitional stratigraphic system between local lithostratigraphy and global chronostratigraphy. Therefore, a new tripartite stratigraphic classification scheme has been proposed. By combining organically the concept of sequence boundaries with the GSSP, it is suggested that the GSSP should be chosen in a conformale portion of a related sequence boundary, and the boundary established in light of this concept is defined as the Best Natural Boundary (BNB). The definition of the BNB points out the working area and stratigraphic level for the GSSP. By referring to a case study of the Permian Guadalupian/Lopingian boundary, the concept of the BNB has been elaborated in detail, and it is proposed that the BNB of the Guadalupian and the Lopingian lies between the Mesogondolella granti Zone and the Ctarkina postbitteri Zone, which is also the sequence chronostratigraphic boundary between the Transpecos composite sequence (chronozone)and the UAA- 1 composite sequence (chronozone).