The characteristic gamma-ray spectrum of TNT in the soil induced by DT neutrons is measured by the PFTNA demining system. The GEANT4 toolkit is used to simulate the whole experimental procedure. The simulated spectra ...The characteristic gamma-ray spectrum of TNT in the soil induced by DT neutrons is measured by the PFTNA demining system. The GEANT4 toolkit is used to simulate the whole experimental procedure. The simulated spectra are compared with the experimental spectra, and they are mainly consistent. The share of the background sources such as neutrons and gamma is obtained and the contribution that the experimental apparatus to the background, such as shielding, detector sleeve and moderator, is analyzed. The effective gamma signal(from soil and TNT) is 29% of the full spectrum signal, and the background signal, more than 68%, this is mainly produced by shielding and the detector sleeve. By gradually optimizing the shielding and the cadmium sheet of the detector sleeve, the share of the effective gamma signal increases to 47%, and the background signal reduces to 18%.展开更多
A Levenberg–Marquardt Gaussian fitting algorithm has been used for analyzing the overlap of three peaks(the 583-ke V peak of^(208)Tl, the 609-ke V peak of214 Bi, and the 662-ke V peak of^(137)Cs) using an in situ Na ...A Levenberg–Marquardt Gaussian fitting algorithm has been used for analyzing the overlap of three peaks(the 583-ke V peak of^(208)Tl, the 609-ke V peak of214 Bi, and the 662-ke V peak of^(137)Cs) using an in situ Na I(Tl) scintillation spectrometer. The algorithm, in addition,was compared with a genetic algorithm used for multiple deconvolution. The three fitted peak areas(583, 609, and662 ke V) were calculated from the measured gamma-ray spectra obtained from a simulation experiment in which a^(137) Cs source was buried at different soil depths(from 18 to38 cm). The application of the Levenberg–Marquardt algorithm yielded similar results compared to the genetic algorithm. A lack-of-fit test showed that the fitting is good when the instrumental noise levels were estimated from replicated analyses. The relative fitting error of the total net area and the residual standard deviation were within 5 %and 0.04, respectively, and the goodness of the fitting was better than 0.98. While the methods used in this paper give high performance, the results may lead to incorrect estimation when the signal-to-noise ratio is smaller than-30 d B. This study is useful for the determination of radioactive specific activity of^(137) Cs by in situ spectrometry.展开更多
The location ofγ-ray emission of blazars remains a contested topic,inspiring the development of numerous investigative techniques to address this issue.In this work,we analyzed Fermiγ-ray light curves in the GeV and...The location ofγ-ray emission of blazars remains a contested topic,inspiring the development of numerous investigative techniques to address this issue.In this work,we analyzed Fermiγ-ray light curves in the GeV and MeV bands,employing the discrete cross-correlation function method to discern time lags between the two bands.For 4C+21.35,Ton 599,B21420+32,and PKS 1510-089,we identified a time lag spanning several days,while for PKS 1441+25,the time lag was not statistically found.The results imply that the soft photons necessary for inverse Compton scattering predominantly originate from the dusty torus in the first four sources,whereas for PKS1441+25,they seem to be sourced mainly from the broad-line region.Further analysis of the opacity(τγγ)and the GeV spectra study supports the conclusion that the location of the dissipation region must be beyond the BLR to avoid significant absorption.Notably,for PKS 1441+25,the emission region is also posited to lie outside yet proximate to the BLR.The parameters of describing the emission region were obtained by fitting broadband spectral energy distribution with contemporaneous observation data.Our findings suggest that for the five TeV FSRQs,during Te V flaring events,the jet appears to maintain an equilibrium between the energy density of the magnetic field and that of the particles for all investigated sources,with the exceptions of 4C+21.35 and PKS1441+25.In terms of the overall jet power,particle energy is the dominant contributor,and the observed blazar radiation cannot be solely attributed to the magnetic field,except in the case of 4C+21.35.Consequently,magnetic reconnection is unlikely to be the primary mechanism behind particle acceleration in these systems.展开更多
The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detecti...The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.展开更多
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light cur...GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.展开更多
To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic upd...To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.展开更多
The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a com...The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.展开更多
The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-...The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.展开更多
Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method tha...Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.展开更多
After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“...After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“approximately 0.1℃and 0.5%”should be“approximately 0.1℃and 0.5‰”.展开更多
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn...The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis.展开更多
We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by va...We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.展开更多
AIM:To investigate the short-term efficacy and safety of inebilizumab for neuromyelitis optica spectrum disorders(NMOSD).METHODS:A total of 33 patients with NMOSD treated with inebilizumab(Group INB,n=15)or rituximab(...AIM:To investigate the short-term efficacy and safety of inebilizumab for neuromyelitis optica spectrum disorders(NMOSD).METHODS:A total of 33 patients with NMOSD treated with inebilizumab(Group INB,n=15)or rituximab(Group RTX,n=18)in addition to high-dose glucocorticoids were included.Both groups underwent hormone shock therapy during the acute phase.Subsequently,Group INB received inebilizumab injections during the remission phase,while Group RTX received rituximab injections.A comparison of aquaporins 4(AQP4)titer values,peripheral blood B lymphocyte counts,and visual function recovery was conducted before and 8wk after treatment.Additionally,adverse reactions and patient tolerability were analyzed after using inebilizumab treatment regimes.RESULTS:Following inebilizumab treatment,there was a significantly improvement in the visual acuity of NMOSD patients(P<0.05),accompanied by a notable decrease in AQP4 titer values and B lymphocyte ratio(P<0.05).Moreover,inebilizumab treatment showed a partial effect in preventing optic nerve atrophy(P<0.05).However,there were no significant differences in other therapeutic effects compared to rituximab,which has previously demonstrated substantial therapeutic efficacy(P>0.05).Furthermore,inebilizumab exhibited higher safety levels than that of rituximab injections.CONCLUSION:The combination of inebilizumab and high-dose glucocorticoids proves to be effective.In comparison to rituximab injections,inebilizumab displays better tolerance and safety.Moreover,it demonstrates a partial effect in preventing optic nerve atrophy.Thus,it stands as an effective method to reduce the disability rates and improve the daily living ability of patients with NMOSD.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
The effective intervention strategy for autism spectrum disorder(ASD)are currently limited.Herein,we attempted to evaluate the potential of L-proline(Pro),a multifunctional amino acid,in ameliorating autismlike behavi...The effective intervention strategy for autism spectrum disorder(ASD)are currently limited.Herein,we attempted to evaluate the potential of L-proline(Pro),a multifunctional amino acid,in ameliorating autismlike behaviors and clarify the molecular mechanisms involved by using the typical valproic acid(VPA)-induced mouse model of ASD.Pro significantly attenuates repetitive behaviors and social dysfunction in ASD mice.The correlation analysis revealed that the beneficial effects of Pro on autism-like behaviors are related to the modulation of gut microbiota structure and composition.The histological analysis revealed that Pro could reverse the decrease of Nissl-positive cells in the prefrontal cortex(PFC)induced by VPA exposure.RNA sequencing demonstrated that Pro can also alter the PFC transcriptomic profile distinguished by the regulation of genes involved in Parkinson disease,neuroactive ligand-receptor interaction,oxidative phosphorylation,and mitogen activated protein kinase signaling pathway.Overall,dietary Pro supplementation may be a promising intervention strategy for ASD.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)mission is designed to monitor the Gamma-Ray Bursts(GRBs)associated with gravitational waves and other high-energy transient sources...The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)mission is designed to monitor the Gamma-Ray Bursts(GRBs)associated with gravitational waves and other high-energy transient sources.The mission consists of two microsatellites which are planned to operate at the opposite sides of the Earth.Each GECAM satellite could detect and localize GRBs in about 8 keV-5 MeV with its 25 Gamma-Ray Detectors(GRDs).In this work,we report the in-flight energy calibration of GRDs using the characteristic gamma-ray lines in the background spectra,and show their performance evolution during the commissioning phase.Besides,a preliminary cross-calibration of energy response with Fermi GBM data is also presented,validating the energy response of GRDs.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
文摘The characteristic gamma-ray spectrum of TNT in the soil induced by DT neutrons is measured by the PFTNA demining system. The GEANT4 toolkit is used to simulate the whole experimental procedure. The simulated spectra are compared with the experimental spectra, and they are mainly consistent. The share of the background sources such as neutrons and gamma is obtained and the contribution that the experimental apparatus to the background, such as shielding, detector sleeve and moderator, is analyzed. The effective gamma signal(from soil and TNT) is 29% of the full spectrum signal, and the background signal, more than 68%, this is mainly produced by shielding and the detector sleeve. By gradually optimizing the shielding and the cadmium sheet of the detector sleeve, the share of the effective gamma signal increases to 47%, and the background signal reduces to 18%.
基金supported by the National Natural Science Foundation of China(No.41474107)
文摘A Levenberg–Marquardt Gaussian fitting algorithm has been used for analyzing the overlap of three peaks(the 583-ke V peak of^(208)Tl, the 609-ke V peak of214 Bi, and the 662-ke V peak of^(137)Cs) using an in situ Na I(Tl) scintillation spectrometer. The algorithm, in addition,was compared with a genetic algorithm used for multiple deconvolution. The three fitted peak areas(583, 609, and662 ke V) were calculated from the measured gamma-ray spectra obtained from a simulation experiment in which a^(137) Cs source was buried at different soil depths(from 18 to38 cm). The application of the Levenberg–Marquardt algorithm yielded similar results compared to the genetic algorithm. A lack-of-fit test showed that the fitting is good when the instrumental noise levels were estimated from replicated analyses. The relative fitting error of the total net area and the residual standard deviation were within 5 %and 0.04, respectively, and the goodness of the fitting was better than 0.98. While the methods used in this paper give high performance, the results may lead to incorrect estimation when the signal-to-noise ratio is smaller than-30 d B. This study is useful for the determination of radioactive specific activity of^(137) Cs by in situ spectrometry.
基金support from the National Natural Science Foundation of China(NSFC,Grant No.12203034)from the Shanghai Science and Technology Fund under grant No.22YF1431500+11 种基金from the science research grants from the China Manned Space Projectsupport from the National Natural Science Foundation of China(NSFC,grant No.12203043)support from the National Natural Science Foundation of China(NSFC,grant No.11933002)support from the National Natural Science Foundation of China(NSFC,grant No.12173026)the National Key Research and Development Program of China(grant No.2022YFC2807303)the Shanghai Science and Technology Fund(grant No.23010503900)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Shuguang Program(23SG39)of the Shanghai Education Development Foundation and Shanghai Municipal Education Commissionsupport from the National Natural Science Foundation of China(NSFC,grant No.U2031201,and 11733001)the Scientific and Technological Cooperation Projects(20202023)between the People’s Republic of China and the Republic of Bulgariathe science research grants from the China Manned Space Project with No.CMS-CSST-2021A06partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants KP-06-H38/4(2019),KP-06-KITAJ/2(2020),and KP-06-H68/4(2022)。
文摘The location ofγ-ray emission of blazars remains a contested topic,inspiring the development of numerous investigative techniques to address this issue.In this work,we analyzed Fermiγ-ray light curves in the GeV and MeV bands,employing the discrete cross-correlation function method to discern time lags between the two bands.For 4C+21.35,Ton 599,B21420+32,and PKS 1510-089,we identified a time lag spanning several days,while for PKS 1441+25,the time lag was not statistically found.The results imply that the soft photons necessary for inverse Compton scattering predominantly originate from the dusty torus in the first four sources,whereas for PKS1441+25,they seem to be sourced mainly from the broad-line region.Further analysis of the opacity(τγγ)and the GeV spectra study supports the conclusion that the location of the dissipation region must be beyond the BLR to avoid significant absorption.Notably,for PKS 1441+25,the emission region is also posited to lie outside yet proximate to the BLR.The parameters of describing the emission region were obtained by fitting broadband spectral energy distribution with contemporaneous observation data.Our findings suggest that for the five TeV FSRQs,during Te V flaring events,the jet appears to maintain an equilibrium between the energy density of the magnetic field and that of the particles for all investigated sources,with the exceptions of 4C+21.35 and PKS1441+25.In terms of the overall jet power,particle energy is the dominant contributor,and the observed blazar radiation cannot be solely attributed to the magnetic field,except in the case of 4C+21.35.Consequently,magnetic reconnection is unlikely to be the primary mechanism behind particle acceleration in these systems.
基金supported by the National Key Research and Development Program of China(No.2021YFA0718404)the National Natural Science Foundation of China(Nos.12220101003,12173098,U2031149)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(CAS)(No.YSBR-061)the Scientific Instrument Developing Project of CAS(No.GJJSTD20210009)the Youth Innovation Promotion Association of CAS,and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20220197).
文摘The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
基金supported by the National Natural Science Foundation of China(Nos.U1938201 and 12373042)。
文摘GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.
文摘To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550400)the Key Research Program of Frontier Sciences(grant No.ZDBS-LY-7014)of Chinese Academy of Sciences+1 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.12373053 and 12321003)the Natural Science Foundation of Jiangsu Province(grant No.BK20221562)。
文摘The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.
基金performed under the auspices of the Science and Technology Foundation of Guizhou Province(grant No.Qian Ke He Ji Chu ZK[2021]027)Major Science and Technology Program of Xinjiang Uygur Autonomous Region through No.2022A03013-1+1 种基金the National Key Research and Development Program of China(No.2022YFC2205202)the National Natural Science Foundation of China grants 12288102,12041304 and 11847102。
文摘The prompt emission mechanism of gamma-ray bursts(GRBs)is still unclear,and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes.We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor.A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model.First,the parameter distributions of the time-resolved spectrum are given as follows:the low-energy spectral indexα~-0.72,high-energy spectral indexβ~2.42,the peak energy E_(p)~221.69 keV,and the energy flux F~7.49×10^(-6)erg cm^(-2)s^(-1).More than 80%of the bursts exhibit the hardest low-energy spectral indexα_(max),exceeding the synchrotron limit(-2/3).Second,the evolution patterns of a and E_(p)were statistically analyzed.The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of both E_(p)andα.The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs.Finally,we found a significant positive correlation between F and E_(p),with half of the samples exhibiting a positive correlation between F andα.We discussed the spectral evolution of different radiation models.The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process,including photo spheric radiation and synchrotron radiation.However,it may also involve only one radiation mechanism,but more complicated physical details need to be considered.
基金supported by the National Natural Science Foundation of China under grant 12065017Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001support from the Chinese Academy of Sciences(grant Nos.E329A3M1,E32983U8,and E3545KU2)。
文摘Theories of modified gravity suggest that the propagation speed of gravitational waves(GW)v_gmay deviate from the speed of light c.A constraint can be placed on the difference between c and v_gwith a simple method that uses the arrival time delay between GW and electromagnetic wave simultaneously emitted from a burst event.We simulated the joint observation of GW and short gamma-ray burst signals from binary neutron star merger events in different observation campaigns,involving advanced LIGO(aLIGO)in design sensitivity and Einstein Telescope(ET)joint-detected with Fermi/GBM.As a result,the relative precision of constraint on v_gcan reach~10~(-17)(aLIGO)and~10^(-18)(ET),which are one and two orders of magnitude better than that from GW170817,respectively.We continue to obtain the bound of graviton mass m_g≤7.1(3.2)×10~(-20)eV with aLIGO(ET).Applying the Standard-Model Extension test framework,the constraint on v_gallows us to study the Lorentz violation in the nondispersive,nonbirefringent limit of the gravitational sector.We obtain the constraints of the dimensionless isotropic coefficients S_(00)^(4)at mass dimension d=4,which are-1×10^(-15)<S_(00)^(4)<9×10^(-17)for aLIGO and-4×10^(-16)<s_(00)^(4<8<10^(-18))for ET.
文摘After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“approximately 0.1℃and 0.5%”should be“approximately 0.1℃and 0.5‰”.
基金supported by the National Natural Science Foundation of China(Grant Nos.21908052 and 22108200)the Key Program of the Natural Science Foundation of Hebei Province(Grant No.B2020209017)+2 种基金the Project of Science and Technology Innovation Team,Tangshan(Grant No.20130203D)the Natural Science Foundation of Zhejiang Province(Grant No.LQ22B060013)and the Science and Technology Project of Hebei Education Department(Grant No.QN2021113).
文摘The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis.
基金supported by the National Natural Science Foundation of China(Grant No.12004049)the Fund of State Key Laboratory of IPOC(BUPT)(Grant Nos.600119525 and 505019124).
文摘We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.
文摘AIM:To investigate the short-term efficacy and safety of inebilizumab for neuromyelitis optica spectrum disorders(NMOSD).METHODS:A total of 33 patients with NMOSD treated with inebilizumab(Group INB,n=15)or rituximab(Group RTX,n=18)in addition to high-dose glucocorticoids were included.Both groups underwent hormone shock therapy during the acute phase.Subsequently,Group INB received inebilizumab injections during the remission phase,while Group RTX received rituximab injections.A comparison of aquaporins 4(AQP4)titer values,peripheral blood B lymphocyte counts,and visual function recovery was conducted before and 8wk after treatment.Additionally,adverse reactions and patient tolerability were analyzed after using inebilizumab treatment regimes.RESULTS:Following inebilizumab treatment,there was a significantly improvement in the visual acuity of NMOSD patients(P<0.05),accompanied by a notable decrease in AQP4 titer values and B lymphocyte ratio(P<0.05).Moreover,inebilizumab treatment showed a partial effect in preventing optic nerve atrophy(P<0.05).However,there were no significant differences in other therapeutic effects compared to rituximab,which has previously demonstrated substantial therapeutic efficacy(P>0.05).Furthermore,inebilizumab exhibited higher safety levels than that of rituximab injections.CONCLUSION:The combination of inebilizumab and high-dose glucocorticoids proves to be effective.In comparison to rituximab injections,inebilizumab displays better tolerance and safety.Moreover,it demonstrates a partial effect in preventing optic nerve atrophy.Thus,it stands as an effective method to reduce the disability rates and improve the daily living ability of patients with NMOSD.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
基金supported by Beijing Natural Science Foundation(7222249).
文摘The effective intervention strategy for autism spectrum disorder(ASD)are currently limited.Herein,we attempted to evaluate the potential of L-proline(Pro),a multifunctional amino acid,in ameliorating autismlike behaviors and clarify the molecular mechanisms involved by using the typical valproic acid(VPA)-induced mouse model of ASD.Pro significantly attenuates repetitive behaviors and social dysfunction in ASD mice.The correlation analysis revealed that the beneficial effects of Pro on autism-like behaviors are related to the modulation of gut microbiota structure and composition.The histological analysis revealed that Pro could reverse the decrease of Nissl-positive cells in the prefrontal cortex(PFC)induced by VPA exposure.RNA sequencing demonstrated that Pro can also alter the PFC transcriptomic profile distinguished by the regulation of genes involved in Parkinson disease,neuroactive ligand-receptor interaction,oxidative phosphorylation,and mitogen activated protein kinase signaling pathway.Overall,dietary Pro supplementation may be a promising intervention strategy for ASD.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.
基金supported by the Strategic Priority Program on Space Science,the Chinese Academy of Sciences,grant Nos.XDA15360102,XDA15360300 and E02212A02Sthe National Natural Science Foundation of China(Project:12061131007)。
文摘The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)mission is designed to monitor the Gamma-Ray Bursts(GRBs)associated with gravitational waves and other high-energy transient sources.The mission consists of two microsatellites which are planned to operate at the opposite sides of the Earth.Each GECAM satellite could detect and localize GRBs in about 8 keV-5 MeV with its 25 Gamma-Ray Detectors(GRDs).In this work,we report the in-flight energy calibration of GRDs using the characteristic gamma-ray lines in the background spectra,and show their performance evolution during the commissioning phase.Besides,a preliminary cross-calibration of energy response with Fermi GBM data is also presented,validating the energy response of GRDs.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.