BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver fa...In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF.展开更多
BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its me...BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.展开更多
Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction(MI)and myocardial ischemia/reperfusion(MI/R)injury.Due to the limited regenerative ability of cardiomyocytes,...Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction(MI)and myocardial ischemia/reperfusion(MI/R)injury.Due to the limited regenerative ability of cardiomyocytes,understanding the mechanisms of cardiomyocyte death is necessary.Pyroptosis,one of the regulated programmed cell death pathways,has recently been shown to play important roles in MI and MI/R injury.Pyroptosis is activated by damage-associated molecular patterns(DAMPs)that are released from damaged myocardial cells and activate the formation of an apoptosisassociated speck-like protein containing a CARD(ASC)interacting with NACHT,LRR,and PYD domains-containing protein 3(NLRP3),resulting in caspase-1 cleavage which promotes the activation of Gasdermin D(GSDMD).This pathway is known as the canonical pathway.GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11.Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury.Although the effects of MI or MI/R injury on pyroptosis have previously been discussed,knowledge concerning the roles of GSDMD in these settings remains limited.In this review,the evidence from in vitro,in vivo,and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed.Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.展开更多
In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology.Acute liver failure(ALF)is a critical condition characterized by rapid hepatocellular injury and organ d...In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology.Acute liver failure(ALF)is a critical condition characterized by rapid hepatocellular injury and organ dysfunction,and it often necessitates liver transplant to ensure patient survival.Recent research has eluci-dated the involvement of distinct cell death pathways,namely ferroptosis and pyroptosis,in the pathogenesis of ALF.Ferroptosis is driven by iron-dependent lipid peroxidation,whereas pyroptosis is an inflammatory form of cell death;both pathways contribute to hepatocyte death and exacerbate tissue damage.This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF,highlighting the role of key regulators such as silent information regulator sirtuin 1.Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways.Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.展开更多
Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which mi...Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.展开更多
In this editorial,we comment on the article by Zhou et al published in a recent issue.We specifically focus on the crucial roles of ferroptosis and pyroptosis in acute liver failure(ALF),a disease with high mortality ...In this editorial,we comment on the article by Zhou et al published in a recent issue.We specifically focus on the crucial roles of ferroptosis and pyroptosis in acute liver failure(ALF),a disease with high mortality rates.Ferroptosis is the result of increased intracellular reactive oxygen species due to iron accumulation,glutathione(GSH)depletion,and decreased GSH peroxidase 4 activity,while pyroptosis is a procedural cell death mediated by gasdermin D which initiates a sustained inflammatory process.In this review,we describe the characteristics of ferroptosis and pyroptosis,and discuss the involvement of the two cell death modes in the onset and development of ALF.Furthermore,we summarize several interfering methods from the perspective of ferroptosis and pyroptosis for the alleviation of ALF.These observations might provide new targets and a theoretical basis for the treatment of ALF,which are also crucial for improving the prognosis of patients with ALF.展开更多
In this editorial,we comment on the article published in the recent issue of the World Journal of Gastroenterology.Acute liver failure(ALF)is a fatal disease that causes uncontrolled massive hepatocyte death and rapid...In this editorial,we comment on the article published in the recent issue of the World Journal of Gastroenterology.Acute liver failure(ALF)is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function.Ferroptosis and pyroptosis,cell death forms that can be initiated or blocked concurrently,can play significant roles in developing inflammation and various malignancies.However,their roles in ALF remain unclear.The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF,and revealed that the silent information regulator sirtuin 1(SIRT1)inhibits both pathways through p53,dramatically reducing inflammation and protecting hepatocytes.This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF.Thus,we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms.Additionally,we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways,as well as examples of SIRT1 activators being used as disease treatment strategies,providing new insights into the therapy of ALF.展开更多
Sepsis is a life-threatening disease of organ failure caused by dysregulated host responses to infection and other infectious factors.Multi-organ injury is the leading cause of high mortality and septic shock during s...Sepsis is a life-threatening disease of organ failure caused by dysregulated host responses to infection and other infectious factors.Multi-organ injury is the leading cause of high mortality and septic shock during sepsis.Recent studies suggest that noncanonical pyroptosis,characterized mainly by the direct activation of caspase-11-gasdermin D-mediated pyroptosis by cytoplastic lipopolysaccharide,is closely related to sepsis-related organ injury.Here,this review summarizes recent advances in the regulatory mechanisms and targeted natural products from traditional Chinese medicine of the noncanonical pyroptosis pathway in sepsis-related injury.展开更多
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
文摘In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF.
基金Supported by the National Natural Science Foundation of China,No.81570543 and No.81560104
文摘BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.
基金supported by the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand(NC)the Senior Research Scholar Grant from the National Research Council of Thailand(SCC)+2 种基金the Chiang Mai University Center of Excellence Award(NC)the National Research Council of Thailand,Fundamental Fund 2022,Chiang Mai University(FF65/044)(CM)the National Research Council of Thailand(NRCT)(N42A650187)(CM)。
文摘Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction(MI)and myocardial ischemia/reperfusion(MI/R)injury.Due to the limited regenerative ability of cardiomyocytes,understanding the mechanisms of cardiomyocyte death is necessary.Pyroptosis,one of the regulated programmed cell death pathways,has recently been shown to play important roles in MI and MI/R injury.Pyroptosis is activated by damage-associated molecular patterns(DAMPs)that are released from damaged myocardial cells and activate the formation of an apoptosisassociated speck-like protein containing a CARD(ASC)interacting with NACHT,LRR,and PYD domains-containing protein 3(NLRP3),resulting in caspase-1 cleavage which promotes the activation of Gasdermin D(GSDMD).This pathway is known as the canonical pathway.GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11.Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury.Although the effects of MI or MI/R injury on pyroptosis have previously been discussed,knowledge concerning the roles of GSDMD in these settings remains limited.In this review,the evidence from in vitro,in vivo,and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed.Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.
基金Supported by China Medical University,No.CMU111-MF-10.
文摘In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology.Acute liver failure(ALF)is a critical condition characterized by rapid hepatocellular injury and organ dysfunction,and it often necessitates liver transplant to ensure patient survival.Recent research has eluci-dated the involvement of distinct cell death pathways,namely ferroptosis and pyroptosis,in the pathogenesis of ALF.Ferroptosis is driven by iron-dependent lipid peroxidation,whereas pyroptosis is an inflammatory form of cell death;both pathways contribute to hepatocyte death and exacerbate tissue damage.This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF,highlighting the role of key regulators such as silent information regulator sirtuin 1.Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways.Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.
基金supported by grants from the National Key Research and Development Program of China,No.2017YFA0105400(to LR)the Key Research and Development Program of Guangdong Province,No.2019B020236002(to LR)the National Natural Science Foundation of China,Nos.81972111(to LZ),81772349(to BL).
文摘Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.
文摘In this editorial,we comment on the article by Zhou et al published in a recent issue.We specifically focus on the crucial roles of ferroptosis and pyroptosis in acute liver failure(ALF),a disease with high mortality rates.Ferroptosis is the result of increased intracellular reactive oxygen species due to iron accumulation,glutathione(GSH)depletion,and decreased GSH peroxidase 4 activity,while pyroptosis is a procedural cell death mediated by gasdermin D which initiates a sustained inflammatory process.In this review,we describe the characteristics of ferroptosis and pyroptosis,and discuss the involvement of the two cell death modes in the onset and development of ALF.Furthermore,we summarize several interfering methods from the perspective of ferroptosis and pyroptosis for the alleviation of ALF.These observations might provide new targets and a theoretical basis for the treatment of ALF,which are also crucial for improving the prognosis of patients with ALF.
基金Supported by The Hubei Provincial Natural Science Foundation of China,No.2020CFB656.
文摘In this editorial,we comment on the article published in the recent issue of the World Journal of Gastroenterology.Acute liver failure(ALF)is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function.Ferroptosis and pyroptosis,cell death forms that can be initiated or blocked concurrently,can play significant roles in developing inflammation and various malignancies.However,their roles in ALF remain unclear.The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF,and revealed that the silent information regulator sirtuin 1(SIRT1)inhibits both pathways through p53,dramatically reducing inflammation and protecting hepatocytes.This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF.Thus,we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms.Additionally,we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways,as well as examples of SIRT1 activators being used as disease treatment strategies,providing new insights into the therapy of ALF.
基金supported by the National Natural Science Foundation of China(No.82373919)the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQMSX0175)the Excellent Talents Pool Project of Army Medical University.
文摘Sepsis is a life-threatening disease of organ failure caused by dysregulated host responses to infection and other infectious factors.Multi-organ injury is the leading cause of high mortality and septic shock during sepsis.Recent studies suggest that noncanonical pyroptosis,characterized mainly by the direct activation of caspase-11-gasdermin D-mediated pyroptosis by cytoplastic lipopolysaccharide,is closely related to sepsis-related organ injury.Here,this review summarizes recent advances in the regulatory mechanisms and targeted natural products from traditional Chinese medicine of the noncanonical pyroptosis pathway in sepsis-related injury.