In this paper, the authors give a different and more precise analysis of the stability of the classical Gauss-Laguerre quadrature rule for the Cauchy P.V. integrals on the half line. Moreover, in order to obtain this ...In this paper, the authors give a different and more precise analysis of the stability of the classical Gauss-Laguerre quadrature rule for the Cauchy P.V. integrals on the half line. Moreover, in order to obtain this result they give some new estimates for the distance of the zeros of the Laguerre polynomials that can be useful also in other contests.展开更多
This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as ...This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.展开更多
The numerical solutions to the singular integral equations obtained by the fracture mechanical analyses of a cracked wedge under three different conditions are considered. The three considered conditions are:(i) a rad...The numerical solutions to the singular integral equations obtained by the fracture mechanical analyses of a cracked wedge under three different conditions are considered. The three considered conditions are:(i) a radial crack on a wedge with a nonfinite radius under the traction-traction boundary condition,(ii) a radial crack on a wedge with a finite radius under the traction-traction boundary condition, and(iii) a radial crack on a finite radius wedge under the traction-displacement boundary condition. According to the boundary conditions, the extracted singular integral equations have different forms. Numerical methods are used to solve the obtained coupled singular integral equations, where the Gauss-Legendre and the Gauss-Chebyshev polynomials are used to approximate the responses of the singular integral equations. The results are presented in figures and compared with those obtained by the analytical response. The results show that the obtained Gauss-Chebyshev polynomial response is closer to the analytical response.展开更多
This work mainly focuses on the numerical simulation of the Fredholm integral equation of the second kind. Applying the idea of Gauss-Lobatto quadrature formula, a numerical method is developed. For the integral item,...This work mainly focuses on the numerical simulation of the Fredholm integral equation of the second kind. Applying the idea of Gauss-Lobatto quadrature formula, a numerical method is developed. For the integral item, we give an approximation with high precision. The existence condition of the solution for the Fredholm equation is given. Furthermore, the error analyses are presented. Finally, the numerical examples verify the theoretical analysis, and show the efficiency of the algorithm we discussed.展开更多
This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by...This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by this thought, we convert the equations into the associated algebraic equations. The results of the numerical examples are given to illustrate that the approximated method is feasible and efficient.展开更多
In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadratur...In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.展开更多
文摘In this paper, the authors give a different and more precise analysis of the stability of the classical Gauss-Laguerre quadrature rule for the Cauchy P.V. integrals on the half line. Moreover, in order to obtain this result they give some new estimates for the distance of the zeros of the Laguerre polynomials that can be useful also in other contests.
基金Acknowledgements: This research was supported in part by the Nature Science Foundation of China (No. 60473029) and the Open foundation of Beijing Institute of Electronic Science and Technology. The authors would like to thank WANG Bao-cang, QUAN Yi-ning, DONG Li-hua and CHEN Jie for their critical review of the manuscript.
基金supported by National Natural Science Foundation of China(11401347,91430104,11671157,61401255,11426193)Shandong Province Natural Science Foundation(ZR2014AP003)
文摘This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.
文摘The numerical solutions to the singular integral equations obtained by the fracture mechanical analyses of a cracked wedge under three different conditions are considered. The three considered conditions are:(i) a radial crack on a wedge with a nonfinite radius under the traction-traction boundary condition,(ii) a radial crack on a wedge with a finite radius under the traction-traction boundary condition, and(iii) a radial crack on a finite radius wedge under the traction-displacement boundary condition. According to the boundary conditions, the extracted singular integral equations have different forms. Numerical methods are used to solve the obtained coupled singular integral equations, where the Gauss-Legendre and the Gauss-Chebyshev polynomials are used to approximate the responses of the singular integral equations. The results are presented in figures and compared with those obtained by the analytical response. The results show that the obtained Gauss-Chebyshev polynomial response is closer to the analytical response.
文摘This work mainly focuses on the numerical simulation of the Fredholm integral equation of the second kind. Applying the idea of Gauss-Lobatto quadrature formula, a numerical method is developed. For the integral item, we give an approximation with high precision. The existence condition of the solution for the Fredholm equation is given. Furthermore, the error analyses are presented. Finally, the numerical examples verify the theoretical analysis, and show the efficiency of the algorithm we discussed.
文摘This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by this thought, we convert the equations into the associated algebraic equations. The results of the numerical examples are given to illustrate that the approximated method is feasible and efficient.
文摘In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.