The Gibbs free energy differences between the supercooled liquid and the crystalline mixture for the (Zr_(52.5)Ti_5Al_(10)-Ni_(14.6)Cu_(17.9))_((100-x)/100)Sn_x (x=0, 1, 2, 3, 4 and 5) glass forming alloys are estimat...The Gibbs free energy differences between the supercooled liquid and the crystalline mixture for the (Zr_(52.5)Ti_5Al_(10)-Ni_(14.6)Cu_(17.9))_((100-x)/100)Sn_x (x=0, 1, 2, 3, 4 and 5) glass forming alloys are estimated by introducing the equationproposed by Thompson, Spaepen and Turnbull. It can be seen that the Gibbs free energy differences decrease firstas the increases of Sn addition smaller than 3, then followed by a decrease due to the successive addition of Snlarger than 3, indicating that the thermal stabilities of these glass forming alloys increase first and then followed by adecrease owing to the excessive addition of Sn. Furthermore, the activation energy of Zr_(52.5)Ti_5Al_(10)Ni_(14.6)Cu_(17.9) and(Zr_(52.5)Ti_5Al_(10)Ni_(14.6)Cu_(17.9))_(0.97)Sn_3 was evaluated by Kissinger equation. It is noted that the Sn addition increases theactivation energies for glass transition and crystallization, implying that the higher thermal stability can be obtainedby appropriate addition of Sn.展开更多
Thermodynamic properties of 3Y_2O_3·5Al_2O_3 double compound have been determined with CaF_2 single crystal electrolyte galvanic cell at 1049 K to 1230 K.The galvanic cell used can be expressed as: Pt,O_2(g)丨Y_2...Thermodynamic properties of 3Y_2O_3·5Al_2O_3 double compound have been determined with CaF_2 single crystal electrolyte galvanic cell at 1049 K to 1230 K.The galvanic cell used can be expressed as: Pt,O_2(g)丨Y_2O_3(s),YOF_((s))丨CaF_2丨YOF_((s)), 3Y_2O_3·5Al_2O_(3(s))丨Al_2O_(3(s))丨O_2(g),Pt, of which the cell reaction is; 3Y_2O_(3(s))+SAl_2O_(3(s))=3Y_2O_3·SAl_2O_(3(s)) The following result is obtained: A_fG°(3Y_2O_3·5Al_2O_3)=-939500+765.90T±710J/mol where,△fG°(3Y_2O_3·5Al_2O_3)is the free energy of formation of 3Y_2O_3·5Al_2O_3 from Y_2O_3 and Al_2O_3.展开更多
A new thermodynamic expression for Gibbs free energy difference AG between the under-cooled liquid and the corresponding crystals of bulk metallic glasses was derived. The newly proposed expression always gives result...A new thermodynamic expression for Gibbs free energy difference AG between the under-cooled liquid and the corresponding crystals of bulk metallic glasses was derived. The newly proposed expression always gives results in fairly good agreement with experimental values over entire temperature range between the fusion temperature Tm and the glass transition temperature Tg of Pd40Ni40P20, Pd40Cu30Ni10P20 and Pd43Cu27Ni10P20, which possess different heat capacities. However, the TS and KN expressions cannot always provide results in good agreement with the experimental values. In addition, the deviations between the experimental values and the AG calculated by the proposed expression at Tg are smaller than those given by other expressions for all the bulk metallic glasses studied.展开更多
The standard Gibbs free energy of formation of magnesium ferrite was determined by means of two types of solid state electrochemical cells: one using MgZr4(PO4)6 (MZP) as the solid electrolyte and the other using...The standard Gibbs free energy of formation of magnesium ferrite was determined by means of two types of solid state electrochemical cells: one using MgZr4(PO4)6 (MZP) as the solid electrolyte and the other using CaF2 as the solid electrolyte. The first cell was operated in the range of 950 to 1100 K. The second cell was operated in the range of 1125 to 1200 K. The reversibility of the cell EMFs was confirmed by microcoulometric titration. The Gibbs energy changes of magnesium ferrite relative to component oxides were calculated based on EMF measurements and are given by following expressions, respectively: AG1 = -3579-15 T (J/mol) and AGⅡ =6258-24.3 T (J/mol). The results obtained from two different cells are consistent with each other. The results also are in agreement with Rao' s and Tretjakov's data in the measured temperature range. When the Gibbs free energies of formation of MgO and Fe203 were substituted in the reaction, the Gibbs free energies of formation of MgFe204 was obtained in two temperature ranges and the for mations are shown as follows: AG 1Formation =-1427394+360.5 T (J/mol) and AGⅡ Formition =-1417557+351.2 T (J/mol).展开更多
The fundamental law for protein folding is the thermodynamic principle.The amino acid sequence of a protein determines its native structure and the native structure has the minimum Gibbs free energy.Lacking of a Gibbs...The fundamental law for protein folding is the thermodynamic principle.The amino acid sequence of a protein determines its native structure and the native structure has the minimum Gibbs free energy.Lacking of a Gibbs free energy formula is the reason that all ab initio protein structure prediction only empirical and various empirical energy surfaces or landscapes are introduced to fill the gap.We make a quantum mechanics derivation of the Gibbs free energy formula G(X)using quantum statistics for a single conformation X.For simplicity,only monomeric self folding globular proteins are considered.展开更多
In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite st...In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known.展开更多
The transition among multiple charging states of a semiconductor's localized intrinsic/impurity defects is considered as phase transitions, and the concept of transition Gibbs free energy level (TGFEL) is proposed....The transition among multiple charging states of a semiconductor's localized intrinsic/impurity defects is considered as phase transitions, and the concept of transition Gibbs free energy level (TGFEL) is proposed. Dependence of the cross section of TGFEL on its charge state is discussed. Introduction of TGFEL to replace acti- vation energy has fundamentally important consequences for semiconductor physics and devices. TGFEL involves entropy. What is to be included and not included in the entropy term consistently for all defect levels is an unre- solved open question, related to correct interpretation of various experimental data associated with various defect levels. This work is a first step towards resolving this question.展开更多
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula...PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated.展开更多
The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis ...The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene.展开更多
It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material ...It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation.展开更多
The rationality of characteristic crystals model has been expounded. Nine new Gibbs energy functions of CC theory have been established. The regular solution model corresponds to the simplest situation of CC model. An...The rationality of characteristic crystals model has been expounded. Nine new Gibbs energy functions of CC theory have been established. The regular solution model corresponds to the simplest situation of CC model. Any G-functions of CC theory can be used to represent liquid and fcc phases of Ag-Cu system. The lattice stability parameters of characteristic crystals for Ag-Cu alloys can be described with the form accepted by the SGTE group. Only when we have made studies on the law of change of energy, volume and electronic structure of the Ag-Cu system, can we choose the G-function correctly and then establish an integral knowledge system and the database, so as to lay a good foundation for the scientific design of new alloys.展开更多
Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activat...Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.展开更多
The elucidation of vapor-liquid equilibrium (VLE) of the halogenated silane was necessary for the production of silicon derivatives, especially for methylvinyldichlorosilane, due to the lack of the relevant reports. I...The elucidation of vapor-liquid equilibrium (VLE) of the halogenated silane was necessary for the production of silicon derivatives, especially for methylvinyldichlorosilane, due to the lack of the relevant reports. Isobaric VLE for the system methyldichlorosilane-dimethyldichlorosilane-benzene and isobaric VLE of the three binary systems were measured with a new pump-ebulliometer at the pressure of 101.325 kPa. These binary compositions of the equilibrium vapor were calculated according to the Q function of molar excess Gibbs energy by the indirect method and the resulted VLE data agreed well with the thermo-dynamic consistency. Moreover, the experimental data were correlated with the Wilson, NRTL, Margules and van Laar equations by means of the least-squares fit, the acquired optimal interaction parameters were fitted to experimental vapor-liquid equilibrium data for binary systems. The binary parameters of Wilson equation were also used to calculate the bubble point temperature and the vapor phase composition for the ternary mixtures without any additional adjustment. The predicted vapor-liquid equilibrium for the ternary system was in a good agreement with the experimental results. The VLE of binary and multilateral systems provided essential theory for the production of the halogenated silane.展开更多
Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elem...Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elements co-exist in the layer(e.g. Ni, Co and Mn). By contrast, the configuration tends to be ordered if the elements are Li and Mn. Here, by using special quasi-random structures(SQS) algorithm, the essential reasons of the ordering in a promising Li-rich Mn-based cathode material Li2MnO3 are investigated. The difference of internal energy and entropy between ordered and disordered materials is calculated. As a result, based on the Gibbs free energy, it is found that Li2MnO3 should have an ordered structure in TM layer. In comparison, structures with Ni-Mn ratio of 2:1 are predicted to have a disordered TM layer, because the entropy terms have larger impact on the structural ordering than internal energy terms.展开更多
Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,c...Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts.展开更多
This paper describes the equilibrium compositions of the typical medical waste under high temperature pyrolysis by a steam plasma torch using the NASA CEA2 program. Various components from selected typical medical was...This paper describes the equilibrium compositions of the typical medical waste under high temperature pyrolysis by a steam plasma torch using the NASA CEA2 program. Various components from selected typical medical waste were input to the program along with the treatment temperature from 1000 K -4100 K. The program then performed the Gibbs free energy calculations and searched for the equilibrium composition with minimizing the total system Gibbs free energy. The calculation results indicate that, the equilibrium composition of a system C-H-O at C/O = 1 in the temperature range of 1400 K - 2000 K has demonstrated that gas composition are CO and H2 mainly, the other components (CO2, C2H4, C2H2, CH4 etc.) is less than 1% by volume and the degree of raw material transformation is about 100%. Comparison with air plasma, the steam plasma treatment will not produce nitrogen oxides, if the materials are free of nitrogen element.展开更多
Calcium sulfoaluminate,3CaO·3Al2O3·CaSO4,has been widely recognized in the realms of high-temperature combustion and cement chemistry.However,the lack of relevant thermodynamic data limits the progress of it...Calcium sulfoaluminate,3CaO·3Al2O3·CaSO4,has been widely recognized in the realms of high-temperature combustion and cement chemistry.However,the lack of relevant thermodynamic data limits the progress of its research and development.Through comparative calculations using several different approaches,we obtain the thermochemical properties of 3CaO·3Al2O3·CaSO4 in this work,such as its standard formation enthalpy,Gibbs free en- ergy of formation,entropy,and molar heat capacity.With these fundamental data,thermodynamic calculations become possible for reactions involving this mineral.It is found that some reactions proposed in literature to generate this mineral may not proceed thermodynamically.展开更多
The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with ...The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.展开更多
According to the quasi paraboloid rule, a computer program was developed and the Gibbs free energy functions of some compounds in Sialon system were assessed and predicted. It makes the theoretical design of the Sial...According to the quasi paraboloid rule, a computer program was developed and the Gibbs free energy functions of some compounds in Sialon system were assessed and predicted. It makes the theoretical design of the Sialon materials possible.展开更多
Effects of the hydrogen/carbon mole ratio and pyrolysis gas pressure on the acetylene concentration in the hydrogen-carbon system in a plasma torch were numerically calculated by using the chemical thermodynamic equil...Effects of the hydrogen/carbon mole ratio and pyrolysis gas pressure on the acetylene concentration in the hydrogen-carbon system in a plasma torch were numerically calculated by using the chemical thermodynamic equilibrium method of Gibbs free energy. The calculated results indicate that the hydrogen concentration and the pyrolysis gas pressure play crucial roles in acetylene formation. Appropriately abundant hydrogen, with a mole ratio of hydrogen to carbon about 1 or 2, and a relatively high pyrolysis gas pressure can enhance the acetylene concentration. In the experiment, a compromised project consisting of an appropriate hydrogen flow rate and a feasible high pyrolysis gas pressure needs to be carried out to increase the acetylene concentration from coal pyrolysis in the hydrogen plasma torch.展开更多
文摘The Gibbs free energy differences between the supercooled liquid and the crystalline mixture for the (Zr_(52.5)Ti_5Al_(10)-Ni_(14.6)Cu_(17.9))_((100-x)/100)Sn_x (x=0, 1, 2, 3, 4 and 5) glass forming alloys are estimated by introducing the equationproposed by Thompson, Spaepen and Turnbull. It can be seen that the Gibbs free energy differences decrease firstas the increases of Sn addition smaller than 3, then followed by a decrease due to the successive addition of Snlarger than 3, indicating that the thermal stabilities of these glass forming alloys increase first and then followed by adecrease owing to the excessive addition of Sn. Furthermore, the activation energy of Zr_(52.5)Ti_5Al_(10)Ni_(14.6)Cu_(17.9) and(Zr_(52.5)Ti_5Al_(10)Ni_(14.6)Cu_(17.9))_(0.97)Sn_3 was evaluated by Kissinger equation. It is noted that the Sn addition increases theactivation energies for glass transition and crystallization, implying that the higher thermal stability can be obtainedby appropriate addition of Sn.
文摘Thermodynamic properties of 3Y_2O_3·5Al_2O_3 double compound have been determined with CaF_2 single crystal electrolyte galvanic cell at 1049 K to 1230 K.The galvanic cell used can be expressed as: Pt,O_2(g)丨Y_2O_3(s),YOF_((s))丨CaF_2丨YOF_((s)), 3Y_2O_3·5Al_2O_(3(s))丨Al_2O_(3(s))丨O_2(g),Pt, of which the cell reaction is; 3Y_2O_(3(s))+SAl_2O_(3(s))=3Y_2O_3·SAl_2O_(3(s)) The following result is obtained: A_fG°(3Y_2O_3·5Al_2O_3)=-939500+765.90T±710J/mol where,△fG°(3Y_2O_3·5Al_2O_3)is the free energy of formation of 3Y_2O_3·5Al_2O_3 from Y_2O_3 and Al_2O_3.
基金Acknowledgement The project was supported by Scientific Research Fund of Hunan Provincial Education Department (06B038) and Postdoctoral Science Foundation of Central South University.
文摘A new thermodynamic expression for Gibbs free energy difference AG between the under-cooled liquid and the corresponding crystals of bulk metallic glasses was derived. The newly proposed expression always gives results in fairly good agreement with experimental values over entire temperature range between the fusion temperature Tm and the glass transition temperature Tg of Pd40Ni40P20, Pd40Cu30Ni10P20 and Pd43Cu27Ni10P20, which possess different heat capacities. However, the TS and KN expressions cannot always provide results in good agreement with the experimental values. In addition, the deviations between the experimental values and the AG calculated by the proposed expression at Tg are smaller than those given by other expressions for all the bulk metallic glasses studied.
基金the National Natural Science Foundation of China (No.50572024) the Education Ministry Foundation for Returning Overseas Scholar of China.
文摘The standard Gibbs free energy of formation of magnesium ferrite was determined by means of two types of solid state electrochemical cells: one using MgZr4(PO4)6 (MZP) as the solid electrolyte and the other using CaF2 as the solid electrolyte. The first cell was operated in the range of 950 to 1100 K. The second cell was operated in the range of 1125 to 1200 K. The reversibility of the cell EMFs was confirmed by microcoulometric titration. The Gibbs energy changes of magnesium ferrite relative to component oxides were calculated based on EMF measurements and are given by following expressions, respectively: AG1 = -3579-15 T (J/mol) and AGⅡ =6258-24.3 T (J/mol). The results obtained from two different cells are consistent with each other. The results also are in agreement with Rao' s and Tretjakov's data in the measured temperature range. When the Gibbs free energies of formation of MgO and Fe203 were substituted in the reaction, the Gibbs free energies of formation of MgFe204 was obtained in two temperature ranges and the for mations are shown as follows: AG 1Formation =-1427394+360.5 T (J/mol) and AGⅡ Formition =-1417557+351.2 T (J/mol).
文摘The fundamental law for protein folding is the thermodynamic principle.The amino acid sequence of a protein determines its native structure and the native structure has the minimum Gibbs free energy.Lacking of a Gibbs free energy formula is the reason that all ab initio protein structure prediction only empirical and various empirical energy surfaces or landscapes are introduced to fill the gap.We make a quantum mechanics derivation of the Gibbs free energy formula G(X)using quantum statistics for a single conformation X.For simplicity,only monomeric self folding globular proteins are considered.
基金supported by the NSFC(no 40473024 and 40343019)Project of the 11th and 10th Five-Year Research and Development of International Seabed(noDYXM-115-02-1-11,PY105-01-04-13 and DY 105-01-02-1)+2 种基金Project of Key Laboratory of Marginal Sea Geology,Guangzhou Institute of Geochemistry and South China Sea Institute of Oceanology,CAS(no MSGL08-01,MSGLCAS03-4)Specialized Research Fund for the Doctoral Program of Higher Education(no 20040558049)the Fundamental Research Funds for the Central Universities
文摘In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known.
基金support from CNBM (China National Building Materials) Group for its partial financial support of the work
文摘The transition among multiple charging states of a semiconductor's localized intrinsic/impurity defects is considered as phase transitions, and the concept of transition Gibbs free energy level (TGFEL) is proposed. Dependence of the cross section of TGFEL on its charge state is discussed. Introduction of TGFEL to replace acti- vation energy has fundamentally important consequences for semiconductor physics and devices. TGFEL involves entropy. What is to be included and not included in the entropy term consistently for all defect levels is an unre- solved open question, related to correct interpretation of various experimental data associated with various defect levels. This work is a first step towards resolving this question.
基金supported by the National Research Foundation (NRF) grant funded by the Korea government (NRF2022R1C1C1007619, NRF-2021M3H4A1A01002921, NRF2021M3I3A1084292)supported by the KIST Institutional Program (Project No. 2E32592-23-069)。
文摘PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated.
基金supported by the National Natural Science Foundation of China(21875096)the Natural Science Foundation of Jiangxi Province,China(20181BCD40004,No.20224BAB213015)。
文摘The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene.
文摘It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation.
文摘The rationality of characteristic crystals model has been expounded. Nine new Gibbs energy functions of CC theory have been established. The regular solution model corresponds to the simplest situation of CC model. Any G-functions of CC theory can be used to represent liquid and fcc phases of Ag-Cu system. The lattice stability parameters of characteristic crystals for Ag-Cu alloys can be described with the form accepted by the SGTE group. Only when we have made studies on the law of change of energy, volume and electronic structure of the Ag-Cu system, can we choose the G-function correctly and then establish an integral knowledge system and the database, so as to lay a good foundation for the scientific design of new alloys.
基金financially supported by the National Natural Science Foundation of China(21625604,21776251,21671172,21706229,21878272)~~
文摘Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.
基金Project supported by the Foundation of Science and Technology of the Ministry of Education (No. 03071) and the Natural Science Foundation of Jiangxi Province (No. 0320013), China
文摘The elucidation of vapor-liquid equilibrium (VLE) of the halogenated silane was necessary for the production of silicon derivatives, especially for methylvinyldichlorosilane, due to the lack of the relevant reports. Isobaric VLE for the system methyldichlorosilane-dimethyldichlorosilane-benzene and isobaric VLE of the three binary systems were measured with a new pump-ebulliometer at the pressure of 101.325 kPa. These binary compositions of the equilibrium vapor were calculated according to the Q function of molar excess Gibbs energy by the indirect method and the resulted VLE data agreed well with the thermo-dynamic consistency. Moreover, the experimental data were correlated with the Wilson, NRTL, Margules and van Laar equations by means of the least-squares fit, the acquired optimal interaction parameters were fitted to experimental vapor-liquid equilibrium data for binary systems. The binary parameters of Wilson equation were also used to calculate the bubble point temperature and the vapor phase composition for the ternary mixtures without any additional adjustment. The predicted vapor-liquid equilibrium for the ternary system was in a good agreement with the experimental results. The VLE of binary and multilateral systems provided essential theory for the production of the halogenated silane.
基金Supported by National Key R&D Program of China(2016YFB0700600)Soft Science Research Project of Guangdong Province(No.2017B030301013)
文摘Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elements co-exist in the layer(e.g. Ni, Co and Mn). By contrast, the configuration tends to be ordered if the elements are Li and Mn. Here, by using special quasi-random structures(SQS) algorithm, the essential reasons of the ordering in a promising Li-rich Mn-based cathode material Li2MnO3 are investigated. The difference of internal energy and entropy between ordered and disordered materials is calculated. As a result, based on the Gibbs free energy, it is found that Li2MnO3 should have an ordered structure in TM layer. In comparison, structures with Ni-Mn ratio of 2:1 are predicted to have a disordered TM layer, because the entropy terms have larger impact on the structural ordering than internal energy terms.
基金funded by the National Research Foundation(NRF)Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)Program
文摘Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts.
文摘This paper describes the equilibrium compositions of the typical medical waste under high temperature pyrolysis by a steam plasma torch using the NASA CEA2 program. Various components from selected typical medical waste were input to the program along with the treatment temperature from 1000 K -4100 K. The program then performed the Gibbs free energy calculations and searched for the equilibrium composition with minimizing the total system Gibbs free energy. The calculation results indicate that, the equilibrium composition of a system C-H-O at C/O = 1 in the temperature range of 1400 K - 2000 K has demonstrated that gas composition are CO and H2 mainly, the other components (CO2, C2H4, C2H2, CH4 etc.) is less than 1% by volume and the degree of raw material transformation is about 100%. Comparison with air plasma, the steam plasma treatment will not produce nitrogen oxides, if the materials are free of nitrogen element.
基金Supported by the National Natural Science Foundation of China(50906046)the National High-Tech Research and Development Program of China(2009AA05Z303)the Program for New Century Excellent Talents in University(NCET-10-0529)
文摘Calcium sulfoaluminate,3CaO·3Al2O3·CaSO4,has been widely recognized in the realms of high-temperature combustion and cement chemistry.However,the lack of relevant thermodynamic data limits the progress of its research and development.Through comparative calculations using several different approaches,we obtain the thermochemical properties of 3CaO·3Al2O3·CaSO4 in this work,such as its standard formation enthalpy,Gibbs free en- ergy of formation,entropy,and molar heat capacity.With these fundamental data,thermodynamic calculations become possible for reactions involving this mineral.It is found that some reactions proposed in literature to generate this mineral may not proceed thermodynamically.
文摘The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.
文摘According to the quasi paraboloid rule, a computer program was developed and the Gibbs free energy functions of some compounds in Sialon system were assessed and predicted. It makes the theoretical design of the Sialon materials possible.
文摘Effects of the hydrogen/carbon mole ratio and pyrolysis gas pressure on the acetylene concentration in the hydrogen-carbon system in a plasma torch were numerically calculated by using the chemical thermodynamic equilibrium method of Gibbs free energy. The calculated results indicate that the hydrogen concentration and the pyrolysis gas pressure play crucial roles in acetylene formation. Appropriately abundant hydrogen, with a mole ratio of hydrogen to carbon about 1 or 2, and a relatively high pyrolysis gas pressure can enhance the acetylene concentration. In the experiment, a compromised project consisting of an appropriate hydrogen flow rate and a feasible high pyrolysis gas pressure needs to be carried out to increase the acetylene concentration from coal pyrolysis in the hydrogen plasma torch.