期刊文献+
共找到426篇文章
< 1 2 22 >
每页显示 20 50 100
Glucocorticoid receptor signaling in the brain and its involvement in cognitive function
1
作者 Chonglin Su Taiqi Huang +3 位作者 Meiyu Zhang Yanyu Zhang Yan Zeng Xingxing Chen 《Neural Regeneration Research》 SCIE CAS 2025年第9期2520-2537,共18页
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo... The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders. 展开更多
关键词 brain-derived neurotrophic factor calcium signaling glucocorticoid receptor GLUCOCORTICOID glutamate transmission hypothalamic-pituitary-adrenal axis long-term potentiation neurocognitive disorders NEUROPLASTICITY stress
下载PDF
Increased excitatory amino acid transporter 2 levels in basolateral amygdala astrocytes mediate chronic stress–induced anxiety-like behavior
2
作者 Xirong Xu Shoumin Xuan +3 位作者 Shuai Chen Dan Liu Qian Xiao Jie Tu 《Neural Regeneration Research》 SCIE CAS 2025年第6期1721-1734,共14页
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio... The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders. 展开更多
关键词 ANXIETY ASTROCYTES basolateral amygdala behavior dihydrokainic acid excitatory amino acid transporter 2 fiber photometry GLUTAMATE LDN-212320 TRANSPORTER
下载PDF
Glutamatergic CYLD deletion leads to aberrant excitatory activity in the basolateral amygdala:association with enhanced cued fear expression
3
作者 Huidong Li Faqin Li +8 位作者 Zhaoyi Chen Erwen Wu Xiaoxi Dai Danni Li Haojie An Shiyi Zeng Chunyan Wang Li Yang Cheng Long 《Neural Regeneration Research》 SCIE CAS 2025年第11期3259-3272,共14页
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-... Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression. 展开更多
关键词 basolateral amygdala cued fear expression cylindromatosis deubiquitinase glutamate receptor 1 glutamatergic neuron microglial activation N-methyl-D-aspartate receptor 1 neuronal activation synaptic transmission
下载PDF
The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury
4
作者 Jennifer M.Colón-Mercado Aranza I.Torrado-Tapias +5 位作者 Iris K.Salgado Jose M.Santiago Samuel E.Ocasio Rivera Dina P.Bracho-Rincon Luis H.Pagan Rivera Jorge D.Miranda 《Neural Regeneration Research》 SCIE CAS 2025年第11期3317-3329,共13页
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice... In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment. 展开更多
关键词 ALLODYNIA central neuropathic pain EAAT-1/GLAST EAAT-2/GLT-1 glutamate transporters selective estrogen receptor modulator sexual dimorphism spinal cord injury TRAUMA
下载PDF
On the functions of astrocyte-mediated neuronal slow inward currents 被引量:2
5
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings 被引量:2
6
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke 被引量:1
7
作者 Haitao Zhao Tong Zhang +2 位作者 Haojie Zhang Yunlei Wang Lingna Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1336-1343,共8页
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model ... Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes.We treated the rats with exercise and melatonin therapy for 7 consecutive days.Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats,increased delta power values,and regularized delta power rhythm.Additionally,exercise-with-melatonin therapy improved coordination,endurance,and grip strength,as well as learning and memory abilities.At the same time,it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone.These findings suggest that exercise-withmelatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity. 展开更多
关键词 EXERCISE glutamate receptor 2 HIPPOCAMPUS ischemic stroke learning MELATONIN memory sleep disorder synaptic plasticity
下载PDF
p38 MAPK inhibitor SB202190 suppresses ferroptosis in the glutamate-induced retinal excitotoxicity glaucoma model 被引量:1
8
作者 Lemeng Feng Chao Wang +5 位作者 Cheng Zhang Wulong Zhang Weiming Zhu Ye He Zhaohua Xia Weitao Song 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2299-2309,共11页
Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to ... Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant. 展开更多
关键词 ferroptosis GLAUCOMA glutamate excitotoxicity p38 MAPK retinal ganglion cell SB202190
下载PDF
Ruxolitinib improves the inflammatory microenvironment,restores glutamate homeostasis,and promotes functional recovery after spinal cord injury 被引量:1
9
作者 Jiang Cao Xiao Yu +10 位作者 Jingcheng Liu Jiaju Fu Binyu Wang Chaoqin Wu Sheng Zhang Hongtao Chen Zi Wang Yinyang Xu Tao Sui Jie Chang Xiaojian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2499-2512,共14页
The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arth... The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury. 展开更多
关键词 astrocytes EAAT2 EXCITOTOXICITY glutamate homeostasis JAK-STAT pathway locomotor function NEUROTOXICITY RUXOLITINIB spinal cord injury transcriptome analysis
下载PDF
Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress 被引量:1
10
作者 Honghui Sun Ruichao Liu +6 位作者 Yueting Qi Hongsheng Gao Xueting Wang Ning Jiang Xiaotong Guo Hongxia Zhang Chunyan Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期533-549,共17页
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR... Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines. 展开更多
关键词 Genome-wide identification glutamate receptor(GLR)family low temperature stress salt stress GRAPE
下载PDF
Transcriptomic analysis on cucumber tendril reveals GLRs play important roles in thigmotropism and thigmomorphogenesis
11
作者 Mengzhuo Zhang Bowen Wang +4 位作者 Shenhao Wang Tongxu Xin Keyi Ye Sanwen Huang Xueyong Yang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1177-1186,共10页
Thigmotropism and thigmomorphogenesis are two related and pervasive processes that play crucial roles in plant adaptation to the environment.However,there have been few investigations into the molecular regulatory mec... Thigmotropism and thigmomorphogenesis are two related and pervasive processes that play crucial roles in plant adaptation to the environment.However,there have been few investigations into the molecular regulatory mechanisms of these phenomena.Cucumber(Cucumis sativus L.)tendrils are ideal material for studying thigmotropism and thigmomorphogenesis because they display a combination of the two processes.Here,we generated the transcriptome profiles of cucumber tendrils at the young,stretch,and coiling stages.Genes related to receptor proteins,transmembrane transport,and ion transport were significantly enriched among those differentially expressed between stages.Pharmacological assays illustrated that three GLUTAMATE RECEPTOR(GLR)genes might play a vital function in perceiving or transducing touch stimulation signals.Comparing the transcriptomes of tendrils and roots after touch stimulation,we found that genes related to extracellular stimulus and xyloglucan metabolism might have conserved functions in the regulation of thigmomorphogenesis.The transcriptome atlas of thigmotropism and thigmomorphogenesis of cucumber tendrils constructed in this study will help further elucidate the molecular mechanisms behind these processes. 展开更多
关键词 CUCUMBER Thigmotropism Thigmomorphogenesis TRANSCRIPTOME TENDRIL GLUTAMATE RECEPTOR
下载PDF
The glutamate receptor gene GLR3.3:A bridge of calciummediated root development in poplar
12
作者 Yi An Ya Geng +5 位作者 Yu Liu Xiao Han Lichao Huang Wei Zeng Jin Zhang Mengzhu Lu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第6期1449-1462,共14页
Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Cal... Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production. 展开更多
关键词 Glutamate receptor CALCIUM Root development Lateral root POPLAR
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
13
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Adenosine A_(2A)receptor blockade attenuates excitotoxicity in rat striatal medium spiny neurons during an ischemic-like insult
14
作者 Elisabetta Coppi Federica Cherchi Alasdair J.Gibb 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期255-257,共3页
During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membra... During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia. 展开更多
关键词 adenosine A_(2A)receptors anoxic depolarization brain ischemia glutamate excitotoxicity medium spiny neurons oxygen and glucose deprivation
下载PDF
Sensory and Nutritional Properties and Stability of Formulated Organic Food Flavour Enhancers
15
作者 Bebbe Fadimatou Bolona Bonheur Achu Mercy Bih Loh 《Open Journal of Applied Sciences》 2024年第6期1490-1506,共17页
Most food flavours have been shown to contain high quantities of cooking salt, followed by flavour enhancers such as sodium glutamate, disodium inosinate, disodium guanylate and hydrogenated oils. Excess of these subs... Most food flavours have been shown to contain high quantities of cooking salt, followed by flavour enhancers such as sodium glutamate, disodium inosinate, disodium guanylate and hydrogenated oils. Excess of these substances is associated with cardiovascular diseases and neurodegenerative disorders. In an effort to reduce the harmful effects of these synthetic substances, this study therefore aimed to formulate organic, nutritious food flavours with good storage stability from less harmful locally available food ingredients. A survey was carried out in 130 households and restaurants in the city of Yaoundé Cameroon, in order to evaluate the level of consumption of industrial flavours. Certain ingredients such as prawns, onions, garlic, white peppers, gingers and salt were used in some households as organic flavours. These ingredients and others were used to prepare 5 organic flavours. Their sensory and nutritional analyses and stability to storage within 90 days were evaluated. The survey revealed that 74.6% of respondents consume industrial flavours, with the cube flavour being the most widely consumed (81%). Two of the 5 organic flavours (434 and 634) had highest scores for general acceptability. The nutritional analyses of the formulae retained (434 and 634), showed that they contained: 11.08% and 10.68% fresh weight for moisture, 47.63% and 43.53% protein, 16.52% and 13.62% lipids, 2.20% and 2.44% fibres, 11.69% and 16.39% carbohydrates. Formula 434, the most accepted, had higher contents of Ca (257.97), Mg (115.91), K (1163), Zn (2.98), Cu (1.02) and Fe (12.43 mg/100g DM) while the second (634) had higher contents of sodium (3270.48) and manganese (2.18 mg/100g). Their water activity during storage in polypropylene bags for 90 days ranged from 0.39 - 0.58 at a temperature of 26.6˚C - 37˚C. The oxidative stability (90 days), determined by the acid and peroxide indices, was 9.18 - 14.13 mg KOH/g and 1.98 - 6.46 meq O2/Kg, respectively indicating good stability for 90 days of storage. The high levels of proteins and minerals in our two products justify their umami taste and can be used as highly nutritional food flavour enhancers to prevent cardiovascular diseases, especially in the elderly. 展开更多
关键词 Organic Food Flavour Monosodium Glutamate PROTEINS MINERALS STABILITY
下载PDF
Age-related Changes of Glu/GABA Expression in the Primary Visual Cortex of Cat 被引量:4
16
作者 刁建刚 徐金旺 +2 位作者 李古州 汤传宏 华田苗 《Zoological Research》 CAS CSCD 北大核心 2009年第1期38-44,共7页
Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects i... Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging. 展开更多
关键词 Glutamic acid (Glu) γ-Aminobutyric acid (GABA) Balance of excitation and inhibition Aging Primary visual cortex CAT
下载PDF
Environmental cues associated with morphine modulate release of glutamate and γ-aminobutyric acid in ventral subiculum 被引量:2
17
作者 康林 戴正泽 +1 位作者 李浩洪 马兰 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第5期255-260,共6页
Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral sub... Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit. 展开更多
关键词 conditioning place preference conditioning place aversion ventral subiculum MICRODIALYSIS γ-aminobutyric acid GLUTAMATE
下载PDF
Adsorption of glutamic acid from aqueous solution with calcined layered double Mg-Fe-CO_3 hydroxide 被引量:1
18
作者 焦飞鹏 帅丽 +3 位作者 于金刚 蒋新宇 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3971-3978,共8页
Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as... Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step. 展开更多
关键词 calcined layered double hydroxides glutamic acid ADSORPTION
下载PDF
Establishment of 6VS Telocentric Lines of Haynaldia villosa Resistant to Powdery Mildew Induced by Immature Embryo Culture 被引量:1
19
作者 李辉 陈孝 +3 位作者 辛志勇 徐惠君 杜丽璞 马有志 《Acta Botanica Sinica》 CSCD 2002年第2期127-131,共5页
The line of T240-6 was selected from 32 SC 2 lines of immature embryo culture of T240 (common wheat (Triticum aestivum L.)× Wheat-Haynaldia villosa (L.) Schur. 6D/6V substitution line) through powdery mildew ch... The line of T240-6 was selected from 32 SC 2 lines of immature embryo culture of T240 (common wheat (Triticum aestivum L.)× Wheat-Haynaldia villosa (L.) Schur. 6D/6V substitution line) through powdery mildew characterization, glutamate oxaloacetate transaminase (GOT) enzyme and gliadin (Gli) analyses and in situ hybridization. All of the individual plants resistant to powdery mildew lacked the locus of GOT at 6VL arm (GOT-V 2) and had gliadin locus at 6VS arm (Gli-V 2) of Haynaldia villosa. All the plants resistant to powdery mildew had one or two telocentric chromosomes that did not pair with wheat chromosomes but paired between themselves. T240-6 was identified as a telocentric line through in situ hybridization. 展开更多
关键词 Haynaldia villosa immature embryo culture telocentric chromosome glutamate oxaloacetate transaminase GLIADIN in situ hybridization
下载PDF
抑郁症发病机制研究的新视角:谷氨酸受体膜稳定性及其调控(英文) 被引量:2
20
作者 陈建国 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第5期450-451,共2页
OBJECTIVE Major depressive disorder(MDD) is a common mental illness,which shows serious dysfunction in emotion,motivation and cognition. The imbalance of monoamine neurotransmitter is the classic pathogenesis of depre... OBJECTIVE Major depressive disorder(MDD) is a common mental illness,which shows serious dysfunction in emotion,motivation and cognition. The imbalance of monoamine neurotransmitter is the classic pathogenesis of depression,but more and more evidence indicates that glutamatergic transmission may be the key factor leading to the occurrence of depression. However,the role of the membrane expression and regulation of glutamate receptors in the development of depression has not been elucidated. To address this issue,we have done series of experiments. METHODS Different methods and techniques,such as behavior,morphology,molecular biology and electrophysiology,were applied to investigate the impact of glutamate receptors and their subunits in the regulation of synaptic plasticity and the mechanism in depressive animal models. RESULTS Chronic social defeat stress(CSDS) can induce depressive behaviors in wildtype(WT) mice but not caspase-1 knockout(KO) mice. Further experiments showed that,in WT mice,CSDS induced a significant decrease in the membrane expression levels of the GluR1 and GluR2 subunits of AMPA receptors,the amplitudes of m EPSC in hippocampal CA1,meanwhile the long-term potentiation(LTP) at hippocampus SC-CA1 pathway was also impaired. Oppositely,this CSDS-induced reduction of the membrane expression of AMPA receptors was prevented by the knockout of caspase-1 or caspase-1 inhibitor,in which the expression of GluA1 and GluA2 were upregulated from(60.2±3.4)% and(63.9±3.7)% to(120.1±5.9)%and(112.6±9.6)%,respectively,while the total protein level of AMPA receptor subunits were not affected.On the other hand,a chronic intracerebroventricular injection of IL-1β,a downstream signal molecule of caspase-1,could induce depression-and anxiety-like behaviors in caspase-1 KO mice. CONCLUSION The caspase-1 can mediate the stress-induced depression-like behaviors by down-regulation of the membrane expression of AMPA receptors in hippocampus,the inhibition or knock-out of caspase-1can increase the expression of AMPA receptors in the membrane,thus reversing the depression-like behavior. Caspase-1 may serve as new target for depression therapy. 展开更多
关键词 DEPRESSION glutamate receptor synaptic plasticity
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部