BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI ...GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI contributes to at least fifty percent of GPX activity in rodent small intestmal epithelium. The total GPX activity consists of at least 70% of selenium-dependent GPX activity in this compartment.By analyzing a panel of mouse mterspecies DNA from the Jackson Laboratory's backcross resource,we mapped Gpx2 gene to mouse chromosome 12 between D12Mit4 and D12Mit5, near the Ccs1 locus which contains a colon cancer susceptibility gene. A pseudogene, Gpx2-ps is mapped to mouse chromosome 7.Comparison of Gpx2 gene expression in three pairs of C57BL/6Ha and ICR/Ha mice which are respectively resistant and sensitive to dimethylhydrazine-induced colon cancer, we found a higher Gpx2 mRNA level in C57BL/6Ha colon than ICR/Ha colon. Interestingly, a lower level of GPX activity is found in the resistant strain of mice. Because GPX-1 has three times higher specific activity than GPX GI, our data suggest that the decreased GPX activity may result from a higher level of Gpx2 gene expression in those cells co-express GPx1 gene展开更多
In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selen...In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance展开更多
The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30...The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30%, a pronounced similarity has been detected on clusters involved in the active site and a common catalytic triad (selenocysteine glutamine and tryptophan) has been defined by structural and kinetic data.A major peculiar feature of the reaction catalyzed by PHGPx is the possibility to accommodate large lipophilic substrates. This accounts for the observed dramatic antiperoxidant effect and the synergism with vitamin E.Moreover, the reduction of lipid hydroperoxides accounts also for the observed modulation of cycloxygenase and inhibition of 15-lipoxygenase.On the other hand, structural and kinetic data indicate that also the specificity of PHGPx for the donor substrate is not restricted to GSH and the recent observation the PHGPx binds to specific mitochondrial proteins, from which it is released by ionic strength and thiols, suggests a possible fole of this seleooenzyme'in catalyzing the specific oxidation of protein thiols,thus modulating the activity of cellular regulatory elements. on this light, the selenium mojety of PHGPx, reacting much faster that thiols with a peroxide, and then oxidizing specific protein thiols, would channel the oxidation toward protein targets, thus providing, by protein-protein interaction, the specificity of the redox transition展开更多
In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human an...In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.展开更多
Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate th...Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERWHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.展开更多
Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium cata...Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily展开更多
Objective To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. Methods A total of ...Objective To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. Methods A total of 200 laboratory bred male Swiss albino mice were divided into 4 groups (50 mice in each group). Group I: infected untreated group (Control group) received a vehicle of 1% sodium carbonyl methylcellulose (CMC-Na); Group II: infected then treated with artesunate; Group III infected then treated with praziquantel, and group IV: infected then treated with artesunate then praziquantel. Adult S. mansoni worms were collected by Animal Perfusion Method, tissue egg counted, TGR, and CcP mRNA Expression were estimated of in $. mansoni adult worms by semi-quantitative rt-PCR. Results Semi-quantitative rt-PCR values revealed that treatment with artesunate caused significant decrease in expression of schistosome TGR and CcP in comparison to the untreated group. In contrast, the treatment with praziquantel did not cause significant change in expression of these genes. The results showed more reduction in total worm and female worm count in combined ART-PZQ treated group than in monotherapy treated groups by either ART or PZO, Moreover, complete disappearance (100%) of tissue eggs was recorded in ART-PZQ treated group with a respective reduction rate of 95.9% and 68.4% in ART- and PZQ-treated groups. Conclusion The current study elucidated for the first time that anti-schistosomal mechanisms of artesunate is mediated via reduction in expression of schistosome TGR and CcP. Linking these findings, addition of artesunate to praziquantel could achieve complete cure outcome in treatment of schistosomiasis.展开更多
Aim: To study the secretory activity and androgen regulation of glutathione peroxidase (GPx) in epithelial cell cultures from human epididymis. Methods: Tissue was obtained from patients undergoing therapeutic orchide...Aim: To study the secretory activity and androgen regulation of glutathione peroxidase (GPx) in epithelial cell cultures from human epididymis. Methods: Tissue was obtained from patients undergoing therapeutic orchidectomy for prostatic cancer. Epithelial cell cultures were obtained from the caput, corpus and cauda epididymides. Enzymatic activity was measured in conditioned media by colorimetric methods in absence or presence of 1, 10 or 100 nrnoI.L^(-1) testosterone. The effect of 1 μmol.L^(-1) flutamide was also evaluated. Results: GPx activity was higher in cultures from corpus and cauda than caput epididymidis. The presence of different concentrations of testosterone increase enzyme activity in cell cultures from all epididymal regions. Addition of flutamide reverses the androgen dependent increase of GPx activity. Conclusion: GPx activity is secreted from human epididymal cells in a region dependent manner and is regulated by androgens.展开更多
Glutathione peroxidase (GPX1) was the first identified selenium-dependent enzyme, and this enzyme has been most useful as a biochemical indicator of selenium (Se) status and the parameter of choice for determining Se ...Glutathione peroxidase (GPX1) was the first identified selenium-dependent enzyme, and this enzyme has been most useful as a biochemical indicator of selenium (Se) status and the parameter of choice for determining Se requirements. We have continued to study Se regulation of GPX1 to better understand the underlying mechanism and to gain insight into how cells themselves regulate nutrient status. In progressive Se deficiency in rats, GPX1 activity,protein and mRNA all decrease in a dramatic, coordinated and exponential fashion such that Se-deficient GPX1 mRNA levels are 6-15% of Sexadequate levels. mRNA levels for other Sedependent proteins are far less decreased in the same animals. The mRNA levels for a second Se-dependent peroxidase, phospholipid hydroperoxide glutathione peroxidase (GPX4 ), are little affected by Se deficiency, demonstrating that Se regulation of GPX1 is unique. Se regulation of GPX1 activity in growing male and female rats shows that the Se requirernent is 100 ng/g diet, based on liver GPX1 activity; use of GPX1 mRNA as the parameter indicates that the Se requirement is nearer to 50 ng Se/g diet in both male and female rats. This approach will readily detect an altered dietary Se requirement, as shown by the incremental increases in dietary Se requirement by 150, 100 or 50 ng Se/g diet in Seudeficient rat pups repleted with Se for 3, 7 or 14 d, respectively. Studies with CHO cells stably transfected with recombinant GPX1 also show that overexpression of GPX1 does not alter the minimum level of media Se necessary for Se-adequate levels of GPX1 activity or mRNA. We hypothesize that classical GPX1 has an integral biological role in the mechanism used by cells to regulate Se status,making GPX1 an especially useful and effective parameter for determining Se requirements in animals展开更多
The advantages of measuring hepatic oxidative status in liver biopsy are that it helps in diagnosis of hepatic dysfunction, reflects the degree of deterioration in the liver tissues, and helps to determine the severit...The advantages of measuring hepatic oxidative status in liver biopsy are that it helps in diagnosis of hepatic dysfunction, reflects the degree of deterioration in the liver tissues, and helps to determine the severity of hepatic injury. We aimed to study the oxidative stress state in children with chronic hepatitis by using indirect approach in which antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) are determined in the liver tissue. The present study included 21 children and adolescents (12 males, 9 females) suffering from chronic hepatitis. Patients were selected from the Hepatology Clinic, New Children’s Hospital, Cairo University from November 2006 till 2009 and compared with a group of 7 children who happened to have incidental normal liver biopsy. Children with chronic hepatitis had mean age 8.12 ± 1.15 years. It was further subdivided into 2 subgroups: chronic viral heaptitis (n = 13) and cryptogenic hepatitis (n = 8). GPX, SOD and CAT levels were measured in fresh liver tissue (cell free homogenates) using ELISA. In chronic hepatitis group;there was a significant increase in the hepatic GPX activity (38.59 ± 35.82 nmol/min/ml) as compared to the control group (10.62 ± 6.68 nmol/min/ml). Also a significant correlation was observed between SOD and both ALT (r = 0.87, p < 0.05) and AST (r = 0.74, p < 0.05). GPX correlated with ALT (r = 0.80, p < 0.05) level in the chronic viral hepatitis subgroup. Our findings suggest that oxidative stress could play a role in the pathogenesis of chronic hepatitis. These preliminary results are encouraging to conduct more extensive clinical studies combining antioxidant therapy with various treatments.展开更多
To investigate the treatment effect of 2-selenium bridged β -cyclodextrin(2-SeCD),a GPX mimic,on the stroke of stroke-prone spontaneously hypertensive rats(SHRSP),fifty-two SHRSP of 8-week old were randomly divided i...To investigate the treatment effect of 2-selenium bridged β -cyclodextrin(2-SeCD),a GPX mimic,on the stroke of stroke-prone spontaneously hypertensive rats(SHRSP),fifty-two SHRSP of 8-week old were randomly divided into four groups A,B,C and control group D. The rats of groups A,B,C and D were given 1.0%-1.5% NaCl mass fraction as drinking fluid. After onset of stroke,groups A,B and C were given \{orally\} 16.05,160.5 and 1605 mg·kg -1 ·day -1 of 2-SeCD,respectively,and group D was given water for \{2 weeks.\} The clinical score of stroke,systolic blood pressure(SBP),survival time of rats were recorded and the histopathologic examinations of their brain and carotid artery were made after decapitation. The clinical scores of stroke after treatment with 160.5 mg·kg -1 ·day -1 (Group B) and 1605 mg·kg -1 ·day -1 (Group C) of 2-SeCD are 2.55±0.98 and 1.98±0.79,respectively,those are obviously lower than that of group D(3.41±0.83,p<0.01). The survival days in group B(10.0±8.6) and group C(14.4±7.9) are longer than that for group D(4.7±2.9,p<0.01). The electron microscope study showed that the endothelium of carotid artery was near to normal in group B and group C,while it was seriously injured in control group D and mildly injured in group A. 2-SeCD may effectively be used to treat the stroke for SHRSP.展开更多
A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, th...A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D- glucosamine of HA. The H202 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/μmol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.展开更多
The changes of sclenium metabolism, glutathione peroxidase activity and lipid peroxidescontent in the tissues of rats suffering from 30% TBSA full thickness scalding were observed in thefirst 7 days after injury. It w...The changes of sclenium metabolism, glutathione peroxidase activity and lipid peroxidescontent in the tissues of rats suffering from 30% TBSA full thickness scalding were observed in thefirst 7 days after injury. It was found that selenium content in the rat tissues decreased remarkably af-ter injury, which in turn resulted in serious reduction of glutathione peroxidasc activity and significantincrease of lipid peroxides in the scrum, crythrocytcs and liver. However the muscular tissue showedno significant changes. These facts imply that after burn injury, the body is in a state of selenium deficiency, the lossof selenium might be responsible for the reduction of anti - peroxidation ability of glutathioneperoxidase, and conscqucntly there is an increase of lipid peroxides in the tissues. Only the musculartissue is insensitive to lipid peroxidation. It is believed that the reduction of anti-peroxidation abilityof glutathione peroxidasc after bum injury might be one of the main causes to intensify, the injury re-suiting from free radicals.展开更多
Glutathione was modified selectively by 2,4 dinitrochlorobenzene,giving S substituted dinitrophenyl glutathione(GSH S DNP).GSH S DNP was further esterified by iso butanol,hexanol,cyclohexanol and benzyl alcohol.Four h...Glutathione was modified selectively by 2,4 dinitrochlorobenzene,giving S substituted dinitrophenyl glutathione(GSH S DNP).GSH S DNP was further esterified by iso butanol,hexanol,cyclohexanol and benzyl alcohol.Four haptens used to generate abzyme with glutathione peroxidase(GPX)activity were synthesized.They are GSH DNP biesters:GSH DNP di iso butyl ester(GSH DNP IBU),GSH DNP bihexyl ester(GSH DNP HE),GSH DNP bicyclohexyl ester(GSH DNP CH),GSH DNP bibenzylmethyl ester(GSH DNP BE).The structures of the haptens were characterized by means of elemental analysis,IR and 1H NMR.展开更多
Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst...Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst the glutathione peroxidases.In this study,urea-induced effects on the inactivation and unfolding of a recombinant phospholipid hydroperoxide glutathione peroxidase(PHGPx)from Oryza sativa were investigated by means of circular dichroism and fluorescence spectroscopy.With the increase of urea concentration,the residual activity of OsPHGPx decreases correspondingly.When the urea concentration is above 5.0 mol/L,there was no residual activity.In addition,the observed changes in intrinsic tryptophan fluorescence,the binding of the hydrophobic fluorescence probe ANS,and the far UV CD describe a common dependence on the concentration of urea suggesting that the conformational features of the native OsPHGPx are lost in a highly cooperative single transition.The unfolding process comprises of three zones:the native base-line zone between 0 and 2.5 mol/L urea,the transition zone between 2.5 and 5.5 mol/L urea,and the denatured base-line zone above 5.5 mol/L urea.The transition zone has a midpoint at about 4.0 mol/L urea.展开更多
BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anti...BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anticoagulation, decreasing blood viscosity, having anti-inflammatory activity, and scavenging oxygen free radicals. OBJECTIVE: To investigate the intervention effects of LMWH-SOD conjugate on serum levels of nitric oxide (NO), glutathione peroxidase (GSH-Px), and myeloperoxidase (MPO) following cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A randomized, controlled, and neurobiochemical experiment was performed at the Institute of Biochemical Pharmacy, School of Pharmaceutical Sciences, Shandong University between April and July 2004. MATERIALS: A total of 60 Mongolian gerbils of either gender were included in this study. Total cerebral ischemia/reperfusion injury was induced in 50 gerbils by occluding bilateral common carotid arteries. The remaining 10 gerbils received a sham-operation (sham-operated group). Kits of SOD, NO, and MPO were sourced from Nanjing Jiancheng Bioengineering Institute, China. LMWH, SOD, and LMWH-SOD conjugates were provided by Institute of Biochemistry and Biotechnique, Shandong University, China. METHODS: Fifty successful gerbil models of total cerebral ischemia/reperfusion injury were evenly randomized to five groups: physiological saline, LMWH-SOD, SOD, LMWH + SOD, and LMWH. At 2 minutes prior to ischemia, 0.5 mL/65 g physiological saline, 20 000 U/kg LMWH-SOD conjugate, 20 000 U/kg SOD, a mixture of SOD (20 000 U/kg) and LMWH (LMWH dose calculated according to weight ratio, LMWH: SOD = 23.6:51), and LMWH (dose as in the LMWH + SOD group) were administered through the femoral artery in each above-mentioned group, respectively. MAIN OUTCOME MEASURES: Serum levels of NO, MPO, and GSH-Px. RESULTS: Compared with 10 sham-operated gerbils, the cerebral ischemia/reperfusion injury gerbils exhibited decreased serum levels of GSH-Px and increased serum levels of NO and MPO (P 〈 0.01). The serum level of GSH-Px was significantly upregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01), compared with the physiological saline group (P 〈 0.05-0.01). Following medical treatment, serum levels of NO and MPO were significantly downregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01). Serum levels of GSH-Px, NO, and MPO in the LMWH-SOD group were close to those in the sham-operated group (P 〉 0.05). CONCLUSION: In cerebral ischemia/reperfusion injury, LMWH-SOD conjugate exhibits stronger neuroprotective effects on free radical scavenging, inflammation inhibition, and cytotoxicity inhibition than simple or combined application of LMWH and SOD by downregulating NO and MPO levels and upregulating the GSH-Px level.展开更多
Objective To oberve the change in blood glutathione peroxidase (GSH-Px) protein levels of residents in the low-selenium (Se) area by contrasting the blood GSH-Px protein level of the children in the Keshan disease are...Objective To oberve the change in blood glutathione peroxidase (GSH-Px) protein levels of residents in the low-selenium (Se) area by contrasting the blood GSH-Px protein level of the children in the Keshan disease area with those in the Kashin-Beck disease and non-endemic areas. Methods GSH-Px protein levels were measured by enzyme-linked immunosorbent assays (ELISA). The Se content and GSH-Px activity were assayed by the 2,3-diaminonaphthalene spectrofluorimetric method and glutathione reductase-coupled method respectively. Results ①The blood Se content and GSH-Px protein level of children in Keshan disease area (Moding) were significantly lower than those in Xi’an non-endemic area, however, there was no significant difference when compared with the low-Se non-endemic area; ②The blood Se content, GSH-Px activity and GSH-Px protein level of children in the Kashin-Beck disease area (Yulin) were significantly lower than those of children in two non-endemic areas and in the Keshan disease area; ③The blood Se content and GSH-Px activity were positively correlated to the GSH-Px protein level respectively. Conclusion These results indicate that the blood GSH-Px protein level is decreased in the low-Se residents. The Se status not only affects the GSH-Px activity but also regulate the GSH-Px protein level.展开更多
The bioavailability of selenium(Se)from ground beef has been previously found in this laboratory to be greater than that of selenite or selenate when fed to female Fischer 344 rats(B. Shi,J.E.Spallholz,J Am Coil Nutr,...The bioavailability of selenium(Se)from ground beef has been previously found in this laboratory to be greater than that of selenite or selenate when fed to female Fischer 344 rats(B. Shi,J.E.Spallholz,J Am Coil Nutr,13:95 ̄101,1994).In the present study we examined the bioavailability of Se from various commercial portions of beef,the liver,striploin,round, shoulder and brisket.All beef was cooked, freeze-dried,finely powdered and mixed with the other dietary ingredients.The experimental diets were fed to the weanling Fischer 344 rats which had been subjected to dietary depletion of Se for 6 weeks.The bioavailability of Se from the beef diets was compared with that of Se as se lenite or L-seienomethionine(SeMet)added to torula-yeast diets.Each experimental diet contained 0'10mg Se/kg.After 8 weeks of dietary Se repletion,relative activity of liver glutathione peroxidase (EC 1.11.1.9;GSHPx) from the different dietary groups colllpared with that of control animals(100%)was(%):selenite 91,SeMet 122 (P<0.05),liver 108, striploin 105,round 106, shoulder 106,brisket 103.Se recovery in liver was generally highest from SeMet>beef muscle=beef liver>selenite.Muscle tissue deposition of Se was highest from SeMet>beef muscle>selenite=beef liver.In addition, the feeal excretion of Se was lowest from the SeMet dietary group and highest from the selenite dietary group.The experimetal results suggest that all cuts of beef appear to be highly bioavailable sources of dietary Se when compared with selenite or L-SeMet.展开更多
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
文摘GPX-GI is a cytosolic tetrameric Se-dependent glutathione peroxidase, similar in properties to GPX-1. Unlike the almost ubiquitous GPX-1, GPX-GI is mainly expressed in the epithelium of gastrointestinal tract. GPX-GI contributes to at least fifty percent of GPX activity in rodent small intestmal epithelium. The total GPX activity consists of at least 70% of selenium-dependent GPX activity in this compartment.By analyzing a panel of mouse mterspecies DNA from the Jackson Laboratory's backcross resource,we mapped Gpx2 gene to mouse chromosome 12 between D12Mit4 and D12Mit5, near the Ccs1 locus which contains a colon cancer susceptibility gene. A pseudogene, Gpx2-ps is mapped to mouse chromosome 7.Comparison of Gpx2 gene expression in three pairs of C57BL/6Ha and ICR/Ha mice which are respectively resistant and sensitive to dimethylhydrazine-induced colon cancer, we found a higher Gpx2 mRNA level in C57BL/6Ha colon than ICR/Ha colon. Interestingly, a lower level of GPX activity is found in the resistant strain of mice. Because GPX-1 has three times higher specific activity than GPX GI, our data suggest that the decreased GPX activity may result from a higher level of Gpx2 gene expression in those cells co-express GPx1 gene
文摘In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance
文摘The family of glutathione peroxidases encompasses, as far, three tetrameric glutathione'peroxidases (GPx) and the monomeric PHGPx. Although the overall homology between tetrameric enzymes and PHGPx is less than 30%, a pronounced similarity has been detected on clusters involved in the active site and a common catalytic triad (selenocysteine glutamine and tryptophan) has been defined by structural and kinetic data.A major peculiar feature of the reaction catalyzed by PHGPx is the possibility to accommodate large lipophilic substrates. This accounts for the observed dramatic antiperoxidant effect and the synergism with vitamin E.Moreover, the reduction of lipid hydroperoxides accounts also for the observed modulation of cycloxygenase and inhibition of 15-lipoxygenase.On the other hand, structural and kinetic data indicate that also the specificity of PHGPx for the donor substrate is not restricted to GSH and the recent observation the PHGPx binds to specific mitochondrial proteins, from which it is released by ionic strength and thiols, suggests a possible fole of this seleooenzyme'in catalyzing the specific oxidation of protein thiols,thus modulating the activity of cellular regulatory elements. on this light, the selenium mojety of PHGPx, reacting much faster that thiols with a peroxide, and then oxidizing specific protein thiols, would channel the oxidation toward protein targets, thus providing, by protein-protein interaction, the specificity of the redox transition
基金Supported by the National Natural Science Foundation of China(No.30970608)the Applicative Technological Project of Bureau of Science and Technology of Changchun City, China(No.2009045)+1 种基金the Development and Planning Major Program of Jilin Provincial Science and Technology Department, China(No.20100948)the Innovation Method Fund of China (No.2008IM040800)
文摘In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.
基金The Modern Agro-industry Technology Research System under contract No.CARS-47the National High-tech R&D Program(863 Program) of China under contract No.2012AA10A409+1 种基金the Special Fund for Independent Innovation of Shandong Province under contract No.2013CX80202the Special Fund for Agro-scientific Research in the Public Interest under contract No.201103034
文摘Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERWHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.
文摘Glutathione peroxidase, the first example of selenoproteins identified in mammals, was subjected to force field calculations and molecular dynamics in order to enable a clearer comprehension of enzymatic selenium catalysis. Starting from the established X-ray structure of bovine GPX, all kinetically defined intermediates and enzyme substrate complexes were modelled. The models thus obtained support the hypothesis that the essential steps of the catalysis are three distinct redox changes of the active site selenium which, in the ground state, presents itself at the surface of selenoperoxidases as the center of a characteristic triad built by selenocysteine, glutarnine and tryptophan. In GPX, four arginine residues and a lysine residue provide an electrostatic architecture which, in each reductive step, directs the donor substrate GSH towards the catalytic center in such a way that 1ts sulfhydryl group must react with the selenium moiety. To this end, different equally efficient modes of substrate binding appear possible. The models are consistent with substrate specificity data, kinetic pattern and other functional characteristics of the enzyme. Comparison of molecular models of GPX with those of other members of the GPX superfamily reveals that the cosubstrate binding mechanisrns are unique for the classical type of cytosolic glutathione peroxidases but cannot operate e. g. in plasma GPX and phospholipid hydroperoxide GPX. The structural differences between the selenoperoxidases, shown to be relevant to their specificities, are discussed in terms of functional diversification within the GPX superfamily
文摘Objective To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. Methods A total of 200 laboratory bred male Swiss albino mice were divided into 4 groups (50 mice in each group). Group I: infected untreated group (Control group) received a vehicle of 1% sodium carbonyl methylcellulose (CMC-Na); Group II: infected then treated with artesunate; Group III infected then treated with praziquantel, and group IV: infected then treated with artesunate then praziquantel. Adult S. mansoni worms were collected by Animal Perfusion Method, tissue egg counted, TGR, and CcP mRNA Expression were estimated of in $. mansoni adult worms by semi-quantitative rt-PCR. Results Semi-quantitative rt-PCR values revealed that treatment with artesunate caused significant decrease in expression of schistosome TGR and CcP in comparison to the untreated group. In contrast, the treatment with praziquantel did not cause significant change in expression of these genes. The results showed more reduction in total worm and female worm count in combined ART-PZQ treated group than in monotherapy treated groups by either ART or PZO, Moreover, complete disappearance (100%) of tissue eggs was recorded in ART-PZQ treated group with a respective reduction rate of 95.9% and 68.4% in ART- and PZQ-treated groups. Conclusion The current study elucidated for the first time that anti-schistosomal mechanisms of artesunate is mediated via reduction in expression of schistosome TGR and CcP. Linking these findings, addition of artesunate to praziquantel could achieve complete cure outcome in treatment of schistosomiasis.
文摘Aim: To study the secretory activity and androgen regulation of glutathione peroxidase (GPx) in epithelial cell cultures from human epididymis. Methods: Tissue was obtained from patients undergoing therapeutic orchidectomy for prostatic cancer. Epithelial cell cultures were obtained from the caput, corpus and cauda epididymides. Enzymatic activity was measured in conditioned media by colorimetric methods in absence or presence of 1, 10 or 100 nrnoI.L^(-1) testosterone. The effect of 1 μmol.L^(-1) flutamide was also evaluated. Results: GPx activity was higher in cultures from corpus and cauda than caput epididymidis. The presence of different concentrations of testosterone increase enzyme activity in cell cultures from all epididymal regions. Addition of flutamide reverses the androgen dependent increase of GPx activity. Conclusion: GPx activity is secreted from human epididymal cells in a region dependent manner and is regulated by androgens.
文摘Glutathione peroxidase (GPX1) was the first identified selenium-dependent enzyme, and this enzyme has been most useful as a biochemical indicator of selenium (Se) status and the parameter of choice for determining Se requirements. We have continued to study Se regulation of GPX1 to better understand the underlying mechanism and to gain insight into how cells themselves regulate nutrient status. In progressive Se deficiency in rats, GPX1 activity,protein and mRNA all decrease in a dramatic, coordinated and exponential fashion such that Se-deficient GPX1 mRNA levels are 6-15% of Sexadequate levels. mRNA levels for other Sedependent proteins are far less decreased in the same animals. The mRNA levels for a second Se-dependent peroxidase, phospholipid hydroperoxide glutathione peroxidase (GPX4 ), are little affected by Se deficiency, demonstrating that Se regulation of GPX1 is unique. Se regulation of GPX1 activity in growing male and female rats shows that the Se requirernent is 100 ng/g diet, based on liver GPX1 activity; use of GPX1 mRNA as the parameter indicates that the Se requirement is nearer to 50 ng Se/g diet in both male and female rats. This approach will readily detect an altered dietary Se requirement, as shown by the incremental increases in dietary Se requirement by 150, 100 or 50 ng Se/g diet in Seudeficient rat pups repleted with Se for 3, 7 or 14 d, respectively. Studies with CHO cells stably transfected with recombinant GPX1 also show that overexpression of GPX1 does not alter the minimum level of media Se necessary for Se-adequate levels of GPX1 activity or mRNA. We hypothesize that classical GPX1 has an integral biological role in the mechanism used by cells to regulate Se status,making GPX1 an especially useful and effective parameter for determining Se requirements in animals
文摘The advantages of measuring hepatic oxidative status in liver biopsy are that it helps in diagnosis of hepatic dysfunction, reflects the degree of deterioration in the liver tissues, and helps to determine the severity of hepatic injury. We aimed to study the oxidative stress state in children with chronic hepatitis by using indirect approach in which antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) are determined in the liver tissue. The present study included 21 children and adolescents (12 males, 9 females) suffering from chronic hepatitis. Patients were selected from the Hepatology Clinic, New Children’s Hospital, Cairo University from November 2006 till 2009 and compared with a group of 7 children who happened to have incidental normal liver biopsy. Children with chronic hepatitis had mean age 8.12 ± 1.15 years. It was further subdivided into 2 subgroups: chronic viral heaptitis (n = 13) and cryptogenic hepatitis (n = 8). GPX, SOD and CAT levels were measured in fresh liver tissue (cell free homogenates) using ELISA. In chronic hepatitis group;there was a significant increase in the hepatic GPX activity (38.59 ± 35.82 nmol/min/ml) as compared to the control group (10.62 ± 6.68 nmol/min/ml). Also a significant correlation was observed between SOD and both ALT (r = 0.87, p < 0.05) and AST (r = 0.74, p < 0.05). GPX correlated with ALT (r = 0.80, p < 0.05) level in the chronic viral hepatitis subgroup. Our findings suggest that oxidative stress could play a role in the pathogenesis of chronic hepatitis. These preliminary results are encouraging to conduct more extensive clinical studies combining antioxidant therapy with various treatments.
文摘To investigate the treatment effect of 2-selenium bridged β -cyclodextrin(2-SeCD),a GPX mimic,on the stroke of stroke-prone spontaneously hypertensive rats(SHRSP),fifty-two SHRSP of 8-week old were randomly divided into four groups A,B,C and control group D. The rats of groups A,B,C and D were given 1.0%-1.5% NaCl mass fraction as drinking fluid. After onset of stroke,groups A,B and C were given \{orally\} 16.05,160.5 and 1605 mg·kg -1 ·day -1 of 2-SeCD,respectively,and group D was given water for \{2 weeks.\} The clinical score of stroke,systolic blood pressure(SBP),survival time of rats were recorded and the histopathologic examinations of their brain and carotid artery were made after decapitation. The clinical scores of stroke after treatment with 160.5 mg·kg -1 ·day -1 (Group B) and 1605 mg·kg -1 ·day -1 (Group C) of 2-SeCD are 2.55±0.98 and 1.98±0.79,respectively,those are obviously lower than that of group D(3.41±0.83,p<0.01). The survival days in group B(10.0±8.6) and group C(14.4±7.9) are longer than that for group D(4.7±2.9,p<0.01). The electron microscope study showed that the endothelium of carotid artery was near to normal in group B and group C,while it was seriously injured in control group D and mildly injured in group A. 2-SeCD may effectively be used to treat the stroke for SHRSP.
文摘A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D- glucosamine of HA. The H202 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/μmol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.
文摘The changes of sclenium metabolism, glutathione peroxidase activity and lipid peroxidescontent in the tissues of rats suffering from 30% TBSA full thickness scalding were observed in thefirst 7 days after injury. It was found that selenium content in the rat tissues decreased remarkably af-ter injury, which in turn resulted in serious reduction of glutathione peroxidasc activity and significantincrease of lipid peroxides in the scrum, crythrocytcs and liver. However the muscular tissue showedno significant changes. These facts imply that after burn injury, the body is in a state of selenium deficiency, the lossof selenium might be responsible for the reduction of anti - peroxidation ability of glutathioneperoxidase, and conscqucntly there is an increase of lipid peroxides in the tissues. Only the musculartissue is insensitive to lipid peroxidation. It is believed that the reduction of anti-peroxidation abilityof glutathione peroxidasc after bum injury might be one of the main causes to intensify, the injury re-suiting from free radicals.
文摘Glutathione was modified selectively by 2,4 dinitrochlorobenzene,giving S substituted dinitrophenyl glutathione(GSH S DNP).GSH S DNP was further esterified by iso butanol,hexanol,cyclohexanol and benzyl alcohol.Four haptens used to generate abzyme with glutathione peroxidase(GPX)activity were synthesized.They are GSH DNP biesters:GSH DNP di iso butyl ester(GSH DNP IBU),GSH DNP bihexyl ester(GSH DNP HE),GSH DNP bicyclohexyl ester(GSH DNP CH),GSH DNP bibenzylmethyl ester(GSH DNP BE).The structures of the haptens were characterized by means of elemental analysis,IR and 1H NMR.
基金Supported by the National Basic Research Program of China(No.2006CB101706)the Hi-tech Research and DevelopmentProgram of China(No.2007AA100604)the National Natural Science Foundation of China(Nos.30170080and39770078).
文摘Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst the glutathione peroxidases.In this study,urea-induced effects on the inactivation and unfolding of a recombinant phospholipid hydroperoxide glutathione peroxidase(PHGPx)from Oryza sativa were investigated by means of circular dichroism and fluorescence spectroscopy.With the increase of urea concentration,the residual activity of OsPHGPx decreases correspondingly.When the urea concentration is above 5.0 mol/L,there was no residual activity.In addition,the observed changes in intrinsic tryptophan fluorescence,the binding of the hydrophobic fluorescence probe ANS,and the far UV CD describe a common dependence on the concentration of urea suggesting that the conformational features of the native OsPHGPx are lost in a highly cooperative single transition.The unfolding process comprises of three zones:the native base-line zone between 0 and 2.5 mol/L urea,the transition zone between 2.5 and 5.5 mol/L urea,and the denatured base-line zone above 5.5 mol/L urea.The transition zone has a midpoint at about 4.0 mol/L urea.
文摘BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anticoagulation, decreasing blood viscosity, having anti-inflammatory activity, and scavenging oxygen free radicals. OBJECTIVE: To investigate the intervention effects of LMWH-SOD conjugate on serum levels of nitric oxide (NO), glutathione peroxidase (GSH-Px), and myeloperoxidase (MPO) following cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A randomized, controlled, and neurobiochemical experiment was performed at the Institute of Biochemical Pharmacy, School of Pharmaceutical Sciences, Shandong University between April and July 2004. MATERIALS: A total of 60 Mongolian gerbils of either gender were included in this study. Total cerebral ischemia/reperfusion injury was induced in 50 gerbils by occluding bilateral common carotid arteries. The remaining 10 gerbils received a sham-operation (sham-operated group). Kits of SOD, NO, and MPO were sourced from Nanjing Jiancheng Bioengineering Institute, China. LMWH, SOD, and LMWH-SOD conjugates were provided by Institute of Biochemistry and Biotechnique, Shandong University, China. METHODS: Fifty successful gerbil models of total cerebral ischemia/reperfusion injury were evenly randomized to five groups: physiological saline, LMWH-SOD, SOD, LMWH + SOD, and LMWH. At 2 minutes prior to ischemia, 0.5 mL/65 g physiological saline, 20 000 U/kg LMWH-SOD conjugate, 20 000 U/kg SOD, a mixture of SOD (20 000 U/kg) and LMWH (LMWH dose calculated according to weight ratio, LMWH: SOD = 23.6:51), and LMWH (dose as in the LMWH + SOD group) were administered through the femoral artery in each above-mentioned group, respectively. MAIN OUTCOME MEASURES: Serum levels of NO, MPO, and GSH-Px. RESULTS: Compared with 10 sham-operated gerbils, the cerebral ischemia/reperfusion injury gerbils exhibited decreased serum levels of GSH-Px and increased serum levels of NO and MPO (P 〈 0.01). The serum level of GSH-Px was significantly upregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01), compared with the physiological saline group (P 〈 0.05-0.01). Following medical treatment, serum levels of NO and MPO were significantly downregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01). Serum levels of GSH-Px, NO, and MPO in the LMWH-SOD group were close to those in the sham-operated group (P 〉 0.05). CONCLUSION: In cerebral ischemia/reperfusion injury, LMWH-SOD conjugate exhibits stronger neuroprotective effects on free radical scavenging, inflammation inhibition, and cytotoxicity inhibition than simple or combined application of LMWH and SOD by downregulating NO and MPO levels and upregulating the GSH-Px level.
文摘Objective To oberve the change in blood glutathione peroxidase (GSH-Px) protein levels of residents in the low-selenium (Se) area by contrasting the blood GSH-Px protein level of the children in the Keshan disease area with those in the Kashin-Beck disease and non-endemic areas. Methods GSH-Px protein levels were measured by enzyme-linked immunosorbent assays (ELISA). The Se content and GSH-Px activity were assayed by the 2,3-diaminonaphthalene spectrofluorimetric method and glutathione reductase-coupled method respectively. Results ①The blood Se content and GSH-Px protein level of children in Keshan disease area (Moding) were significantly lower than those in Xi’an non-endemic area, however, there was no significant difference when compared with the low-Se non-endemic area; ②The blood Se content, GSH-Px activity and GSH-Px protein level of children in the Kashin-Beck disease area (Yulin) were significantly lower than those of children in two non-endemic areas and in the Keshan disease area; ③The blood Se content and GSH-Px activity were positively correlated to the GSH-Px protein level respectively. Conclusion These results indicate that the blood GSH-Px protein level is decreased in the low-Se residents. The Se status not only affects the GSH-Px activity but also regulate the GSH-Px protein level.
文摘The bioavailability of selenium(Se)from ground beef has been previously found in this laboratory to be greater than that of selenite or selenate when fed to female Fischer 344 rats(B. Shi,J.E.Spallholz,J Am Coil Nutr,13:95 ̄101,1994).In the present study we examined the bioavailability of Se from various commercial portions of beef,the liver,striploin,round, shoulder and brisket.All beef was cooked, freeze-dried,finely powdered and mixed with the other dietary ingredients.The experimental diets were fed to the weanling Fischer 344 rats which had been subjected to dietary depletion of Se for 6 weeks.The bioavailability of Se from the beef diets was compared with that of Se as se lenite or L-seienomethionine(SeMet)added to torula-yeast diets.Each experimental diet contained 0'10mg Se/kg.After 8 weeks of dietary Se repletion,relative activity of liver glutathione peroxidase (EC 1.11.1.9;GSHPx) from the different dietary groups colllpared with that of control animals(100%)was(%):selenite 91,SeMet 122 (P<0.05),liver 108, striploin 105,round 106, shoulder 106,brisket 103.Se recovery in liver was generally highest from SeMet>beef muscle=beef liver>selenite.Muscle tissue deposition of Se was highest from SeMet>beef muscle>selenite=beef liver.In addition, the feeal excretion of Se was lowest from the SeMet dietary group and highest from the selenite dietary group.The experimetal results suggest that all cuts of beef appear to be highly bioavailable sources of dietary Se when compared with selenite or L-SeMet.