期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GmPHR1, a Novel Homolog of the AtPHR1 Transcription Factor, Plays a Role in Plant Tolerance to Phosphate Starvation 被引量:1
1
作者 LI Xi-huan WANG Yun-jie +4 位作者 WU Bing KONG You-bin LI Wen-long CHANG Wen-suo ZHANG Cai-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2584-2593,共10页
GmPHR1 from soybean (Glycine max) was isolated and characterized. This novel homolog of the AtPHR1 transcription factor confers tolerance to inorganic phosphate (Pi)-starvation. The gene is 2 751 bp long, with an ... GmPHR1 from soybean (Glycine max) was isolated and characterized. This novel homolog of the AtPHR1 transcription factor confers tolerance to inorganic phosphate (Pi)-starvation. The gene is 2 751 bp long, with an 819-bp open reading frame and ifve introns. Analysis of transcription activity in yeast revealed that the full-length GmPHR1 and its C-terminal activate the reporter genes for His, Ade and Ura, suggesting that the C-terminal peptide functions as a transcriptional activator. Quantitative real-time PCR indicated that patterns of GmPHR1 expression differed. For example, under low-Pi stress, this gene was quickly induced in the tolerant JD11 after 0.5 h, with expression then decreasing slowly before peaking at 12-24 h. By contrast, induction in the sensitive Niumaohuang (NMH) was slow, peaking at 6 h before decreasing quickly at 9 h. GmPHR1 showed sub-cellular localization in the nuclei of onion epidermal cells and Arabidopsis roots. Growth parameters in wild-type (WT) Arabidopsis plants as well as in overexpression (OE) transgenic lines were examined. Under low-Pi conditions, values for shoot, root and whole-plant dry weights, root to shoot ratios, and lengths of primary roots were signiifcantly greater in OE lines than in the WT. These data demonstrate that GmPHR1 has an important role in conferring tolerance to phosphate starvation. 展开更多
关键词 gmphr1 transcription factor AtPHR1 phosphate starvation low phosphate-stress tolerance SOYBEAN
下载PDF
大豆磷高效基因GmPHR1和GmPAP4共转化及新种质创制 被引量:3
2
作者 耿昭 孔佑宾 +4 位作者 赵莉莉 刘翠 杜汇 李喜焕 张彩英 《作物杂志》 CAS 北大核心 2016年第3期58-62,共5页
磷对大豆生长发育至关重要,土壤有效磷缺乏严重影响其产量和品质。目前已有学者通过转基因手段将磷高效相关基因转入大豆,并获得转基因新材料,但多数集中于单基因转化,而双基因共转化研究甚少。本研究在前期获得转磷高效相关基因Gm PHR1... 磷对大豆生长发育至关重要,土壤有效磷缺乏严重影响其产量和品质。目前已有学者通过转基因手段将磷高效相关基因转入大豆,并获得转基因新材料,但多数集中于单基因转化,而双基因共转化研究甚少。本研究在前期获得转磷高效相关基因Gm PHR1、Gm PAP4大豆新材料基础上,利用农杆菌介导与常规杂交技术进行双基因共转化,结果发现,采用这2种方案均可实现双基因共转化,获得了经PCR及DNA测序分析验证正确的转Gm PHR1与Gm PAP4双基因新材料"JD12-PHR1-PAP4"。 展开更多
关键词 大豆 低磷胁迫 gmphr1 GmPAP4 双基因共转化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部