Targeting at the coal seam with useful value discarded above goafs,attempted to explore the feasibility of'mining technique in the condition of floor failure' from theoretical point of view,and predicted.It in...Targeting at the coal seam with useful value discarded above goafs,attempted to explore the feasibility of'mining technique in the condition of floor failure' from theoretical point of view,and predicted.It indicated that mining technique in the condition of floor failure used above Longwall Goafs in Baijiazhuang Mining is totally feasible.At law,the deformation of the floor in the mining technique by means of probability-integral method.And it is discov- ered that deformed basin can emerge in the footwall of No.6 coal seam and its maximum subsidence was possibly 1 633 mm or so and its maximum positive curvature is 61.74/10^(-3). At last,it therefore suggests appropriate ground pressure control measures as strengthening observation of ground pressure and adopting false slope for exploitation and strengthening support for reasonable push and slide based on the adverse ground pressure behaviors possibly occurring in the mining technique.This serves to gather data and lay sturdy founda- tion for further probe into the mining technique,and offers theoretical and technical grounds for concrete implementation of the mining technique.展开更多
In exploiting shallow coal resources in western China, conservation of water resources is often subjugated to considerations of safety and production in coal mines. In order to maintain a sustainable development in th...In exploiting shallow coal resources in western China, conservation of water resources is often subjugated to considerations of safety and production in coal mines. In order to maintain a sustainable development in the Shenfu-Dongsheng coalfield, we propose a technology of constructing groundwater reservoirs in goafs in shallow coalfields to protect fragile ecological environments. Given the premise of safe production, we selected an appropriate goaf as the site for constructing a groundwater reservoir and used a mine water recharge technique in combination with other related techniques for effective water conservation. Then filtering and purification techniques were used to purify the mine water given the physical and chemical properties of mine water and its filling material, ,thereby greatly reducing suspended matter, calcium and other harmful ions in the water. With the potential of widely application, the research result has been successfully applied in the Daliuta coal mine, to great economic and ecological effect. Therefore, this achievement provides a new way for mine water conservation in shallow coal resources in western China.展开更多
In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. ...In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification.展开更多
China is a significant atmospheric carbon dioxide producer.Burning of agricultural waste in China is also a problematic issue,raising environmental and carbon-emission-related concerns.Furthermore,the coal-dependent e...China is a significant atmospheric carbon dioxide producer.Burning of agricultural waste in China is also a problematic issue,raising environmental and carbon-emission-related concerns.Furthermore,the coal-dependent economy is accompanied by the formation of large coal mine goaf areas,particularly in Shanxi Province.In this context,the idea of filling crop residues into the coal mine goafs is proposed.This concept addresses multi-functions:(1)carbon sequestration,(2)an alternative disposal method of crop residue in rural areas,and(3)coal mine goaf remedy.展开更多
In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental applicati...In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental application was carried out in the upper channel 2304 of a mine in Henan Province. The test results showed that polymer modified cement mortar spraying material could effectively support the roadway and greatly reduce the deformation rate of the roadway. The best spraying thickness is 5 mm. Through the monitoring of tunnel air leakage, it is concluded that the polymer modified cement mortar spraying material can reduce the tunnel air leakage and play a better sealing effect.展开更多
A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic mod...A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area of goal, were selected as discriminant indexes in the stability analysis of goal. The actual data of 40 goals were used as training samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine was distinguished by using this model and the identification result is identical with that of practical situation.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
This paper presents the results of numerical simulations carried out to confirm the influence of former mining activities on deformation of the mining terrain.The assessment of deformation changes was carried out with...This paper presents the results of numerical simulations carried out to confirm the influence of former mining activities on deformation of the mining terrain.The assessment of deformation changes was carried out with the use of FLAC3 D program based on the finite difference method.Numerical calculations were carried out for the example of actual mining operations in seams 703/1-2 and 707/2 of‘‘Marcel"Coal Mine.Taking into account the influence of the model’s plastic features and the so-called activation of a higher occurring seam in conducted simulations enabled obtaining a very good description of the measured subsidence.Based on the results one may state that numerical model can be used to assess the influence of former mining activities and the direction of conducted exploitation on deformations of the mining terrain.These factors are not recognized by geometric-integral theories commonly used for predicting the influence of mining operations on the surface.The results presented in this paper confirm that the applied method of simulating the phenomenon of reactivation of post-mining goafs is correct.展开更多
Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and disp...Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.展开更多
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient e...The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full- space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goal water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.展开更多
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi...An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.展开更多
The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect c...The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.展开更多
The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emiss...The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent.展开更多
While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf...While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining.展开更多
Underground gassy longwall mining goafs may suffer potential gas explosions during the mining process because of the irregularity of gas emissions in the goaf and poor ventilation of the working face,which are risks d...Underground gassy longwall mining goafs may suffer potential gas explosions during the mining process because of the irregularity of gas emissions in the goaf and poor ventilation of the working face,which are risks difficult to control.In this work,the 3235 working face of the Xutuan Colliery in Suzhou City,China,was researched as a case study.The effects of air quantity and gas emission on the three-dimensional distribution of oxygen and methane concentration in the longwall goaf were studied.Based on the revised Coward’s triangle and linear coupling region formula,the coupled methane-oxygen explosive hazard zones(CEHZs)were drawn.Furthermore,a simple practical index was proposed to quantitatively determine the gas explosion risk in the longwall goaf.The results showed that the CEHZs mainly focus on the intake side where the risk of gas explosion is greatest.The CEHZ is reduced with increasing air quantity.Moreover,the higher the gas emission,the larger the CEHZ,which moves towards the intake side at low goaf heights and shifts to the deeper parts of the goaf at high heights.In addition,the risk of gas explosion is reduced as air quantities increase,but when gas emissions increase to a higher level(greater than 50 m3/min),the volume of the CEHZ does not decrease with the increase of air quantity,and the risk of gas explosion no longer shows a linear downward trend.This study is of significance as it seeks to reduce gas explosion accidents and improve mine production safety.展开更多
The ultimately exposed roof area(UERA)of goaf is crucial to the safety and economics of underground mining.The prediction models do not consider the mechanical weakness of rock mass and ignore the influence of the joi...The ultimately exposed roof area(UERA)of goaf is crucial to the safety and economics of underground mining.The prediction models do not consider the mechanical weakness of rock mass and ignore the influence of the joint damage factor,causing a large predicted exposure area with a high roof falling risk.This work adopted joint damage factor to derive a new UERA prediction model.The relationships between the UERA(S)and the span ratio(m),the density(k)and the diameter of fracture(d)were analysed by the new prediction model.The results showed that the exposed area S and the span ratio m have a U-shaped curve relationship.The S decreases with the increase of m and then increases when m is beyond 2.The exposed roof area S is in an inversely proportional power-law relationship with the fracture surface density k,and the curvature of the S-k relationship curve decreases when d=0.5 and k>7,and S is close to 0.There is a negative correlation between S and the fracture surface diameter d,the curvature of the S-d curve decreases with the increase of d and k,and the variation rate increases first and then decreases with the increase of d;when k=0.5 and d>9,S is close to 0.The predicted values of the UERA prediction model are 119.3,112.8,and 114.6 m2 with different joint damage parameters,which are slightly smaller than the actual critical exposure area of a roof(S=120 m2).The case study shows that the alternative prediction model is reasonable and acceptable and provides new theoretical support for the underground mining safety of sedimentary bauxite ore.展开更多
Based on the classical static theory and static numerical simulation,the static method could not accurately reflect the stability of goaf where the rocks on the pillar and roof are influenced by Theological and blasti...Based on the classical static theory and static numerical simulation,the static method could not accurately reflect the stability of goaf where the rocks on the pillar and roof are influenced by Theological and blasting disturbance for a long time.According to the test from the site,an experimental study was made in Theological and dynamic disturbance.After that,on the basis of variable rock mechanics parameters from the experimental data,numerical simulation was used to analyze the vertical stress distribution of goaf,vertical displacement and plastic area of roof in the "deterioration" caused by Theological and blasting,which shows that the mechanics properties of the rock were greatly influenced by Theological,and dynamic disturbance.The results of the experimental study and numerical simulation show that the mechanics properties of rock are greatly influenced by Theological and dynamic disturbance.As a result,the stability of goaf is greatly reduced.Finally,by comparing golf monitoring results with the analysis of theoretical calculation,it was found that the results were approximately the same,which testifies the reliability of the method.This method provides a new way of studying the stability of goaf as well as laying a basic foundation for future safety management.展开更多
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is f...With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.展开更多
In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing supp...In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing support failure are summarized into geology and mining technology.Combining column lithology and composite beam theory,the key stratum of the rock strata is determined.A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars.The tributary area theory(TAT)is adopted to analyze the vertical load distribution of each pillar,and dynamic models of coal pillar instability and main roof fracture are established.Through key block instability analysis,two critical moments are established,of which critical moment A has the greater dynamic load strength.Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof.To reduce these negative effects,a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed:reinforcing stope supports in conjunction with reducing mining height,or drilling ground holes to pre-split the main roof.Based on a comprehensive consideration of economic factors and the two categories of support failure causes,the method of reinforcing stope supports while reducing mining height was selected for use on the mining site.展开更多
基金National Nature Science Foundation of China(50704024)Shanxi Youth Sci-Tech Research Foundation(2007021024)Taiyuan Innovation Program(special item for undergraduate innovation and starting business)(07010746)
文摘Targeting at the coal seam with useful value discarded above goafs,attempted to explore the feasibility of'mining technique in the condition of floor failure' from theoretical point of view,and predicted.It indicated that mining technique in the condition of floor failure used above Longwall Goafs in Baijiazhuang Mining is totally feasible.At law,the deformation of the floor in the mining technique by means of probability-integral method.And it is discov- ered that deformed basin can emerge in the footwall of No.6 coal seam and its maximum subsidence was possibly 1 633 mm or so and its maximum positive curvature is 61.74/10^(-3). At last,it therefore suggests appropriate ground pressure control measures as strengthening observation of ground pressure and adopting false slope for exploitation and strengthening support for reasonable push and slide based on the adverse ground pressure behaviors possibly occurring in the mining technique.This serves to gather data and lay sturdy founda- tion for further probe into the mining technique,and offers theoretical and technical grounds for concrete implementation of the mining technique.
基金Projects NCET-05-0480 supported by the New Century Excellent Talents in University50904063 by the National Natural Science Foundation of China+1 种基金07KF09 by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining & Technology2008A003 and 2005B002 by the Scientific Research Foundation of China University of Mining & Technology
文摘In exploiting shallow coal resources in western China, conservation of water resources is often subjugated to considerations of safety and production in coal mines. In order to maintain a sustainable development in the Shenfu-Dongsheng coalfield, we propose a technology of constructing groundwater reservoirs in goafs in shallow coalfields to protect fragile ecological environments. Given the premise of safe production, we selected an appropriate goaf as the site for constructing a groundwater reservoir and used a mine water recharge technique in combination with other related techniques for effective water conservation. Then filtering and purification techniques were used to purify the mine water given the physical and chemical properties of mine water and its filling material, ,thereby greatly reducing suspended matter, calcium and other harmful ions in the water. With the potential of widely application, the research result has been successfully applied in the Daliuta coal mine, to great economic and ecological effect. Therefore, this achievement provides a new way for mine water conservation in shallow coal resources in western China.
基金Project(51074178)supported by the National Natural Science Foundation of ChinaProject(2011ssxt274)supported by the Graduated Students’ Research and Innovation Foundation of Central South University of China+1 种基金Project(2011QNZT087)supported by the Graduated Students’ Free Exploration Foundation of Central South University of ChinaProject(1343-76140000011)supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,China
文摘In order to precisely predict the hazard degree of goaf(HDG), the RS-TOPSIS model was built based on the results of expert investigation. To evaluate the HDG in the underground mine, five structure size factors, i.e. goaf span, exposed area, goaf height, goaf depth, and pillar width, were selected as the evaluation indexes. And based on rough dependability in rough set(RS)theory, the weights of evaluation indexes were identified by calculating rough dependability between evaluation indexes and evaluation results. Fourty goafs in some mines of western China, whose indexes parameters were measured by cavity monitoring system(CMS), were taken as evaluation objects. In addition, the characteristic parameters of five grades' typical goafs were built according to the interval limits value of single index evaluation. Then, using the technique for order preference by similarity to ideal solution(TOPSIS), five-category classification of HDG was realized based on closeness degree, and the HDG was also identified.Results show that the five-category identification of mine goafs could be realized by RS-TOPSIS method, based on the structure-scale-effect. The classification results are consistent with those of numerical simulation based on stress and displacement,while the coincidence rate is up to 92.5%. Furthermore, the results are more conservative to safety evaluation than numerical simulation, thus demonstrating that the proposed method is more easier, reasonable and more definite for HDG identification.
文摘China is a significant atmospheric carbon dioxide producer.Burning of agricultural waste in China is also a problematic issue,raising environmental and carbon-emission-related concerns.Furthermore,the coal-dependent economy is accompanied by the formation of large coal mine goaf areas,particularly in Shanxi Province.In this context,the idea of filling crop residues into the coal mine goafs is proposed.This concept addresses multi-functions:(1)carbon sequestration,(2)an alternative disposal method of crop residue in rural areas,and(3)coal mine goaf remedy.
文摘In order to reduce the risk of spontaneous combustion in goaf during goaf excavation process, polymer modified cement mortar spraying material was used to spray and seal the roadway surface. The experimental application was carried out in the upper channel 2304 of a mine in Henan Province. The test results showed that polymer modified cement mortar spraying material could effectively support the roadway and greatly reduce the deformation rate of the roadway. The best spraying thickness is 5 mm. Through the monitoring of tunnel air leakage, it is concluded that the polymer modified cement mortar spraying material can reduce the tunnel air leakage and play a better sealing effect.
基金Project (2010CB732004) supported by the National Basic Research Program of China
文摘A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area of goal, were selected as discriminant indexes in the stability analysis of goal. The actual data of 40 goals were used as training samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine was distinguished by using this model and the identification result is identical with that of practical situation.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
文摘This paper presents the results of numerical simulations carried out to confirm the influence of former mining activities on deformation of the mining terrain.The assessment of deformation changes was carried out with the use of FLAC3 D program based on the finite difference method.Numerical calculations were carried out for the example of actual mining operations in seams 703/1-2 and 707/2 of‘‘Marcel"Coal Mine.Taking into account the influence of the model’s plastic features and the so-called activation of a higher occurring seam in conducted simulations enabled obtaining a very good description of the measured subsidence.Based on the results one may state that numerical model can be used to assess the influence of former mining activities and the direction of conducted exploitation on deformations of the mining terrain.These factors are not recognized by geometric-integral theories commonly used for predicting the influence of mining operations on the surface.The results presented in this paper confirm that the applied method of simulating the phenomenon of reactivation of post-mining goafs is correct.
基金financially supported by the National Natural Science Foundation of China(No.51374033)the Doctoral Program of Higher Education Research Fund(No.20120006110022)the Chenchao Iron Mine and the technical support of Itasca
文摘Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.
基金supported by the National Key Scientific Instrument and Equipment Development Project(No.2011YQ03013307)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsKey Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources
文摘The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full- space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goal water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
基金supported by the National Basic Research Program Project of China(No.2010CB732004)the National Natural Science Foundation Project of China(Nos.50934006 and41272304)+2 种基金the Graduated Students’ResearchInnovation Fund Project of Hunan Province of China(No.CX2011B119)the Scholarship Award for Excellent Doctoral Student of Ministry of Education of China and the Valuable Equipment Open Sharing Fund of Central South University(No.1343-76140000022)
文摘An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.
基金supported by the Institute of Seismology Foundation, China Earthquake Administration (201326126)
文摘The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.
基金the National Natural Science Foundation of China(No.51304207)the Fundamental Research Funds for the Key Laboratory of Coal-based CO2 capture and geological storage,China University of Mining and Technology(No.2016A03).
文摘The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(NO.2015XKMS002)the Priority Academic Program Development of Jiangsu Higher Education Institutions of Chinagratefully acknowledge financial support of the above-mentioned agencies
文摘While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining.
基金the National Key Research and Development Program of China(No.2018YFC0808100)the Fundamental Research Funds for the Central Universities(No.2652018098)the Cultivation Fund from the Key Laboratory of Deep Geodrilling Technology,Ministry of Natural Resources(No.PY201902).
文摘Underground gassy longwall mining goafs may suffer potential gas explosions during the mining process because of the irregularity of gas emissions in the goaf and poor ventilation of the working face,which are risks difficult to control.In this work,the 3235 working face of the Xutuan Colliery in Suzhou City,China,was researched as a case study.The effects of air quantity and gas emission on the three-dimensional distribution of oxygen and methane concentration in the longwall goaf were studied.Based on the revised Coward’s triangle and linear coupling region formula,the coupled methane-oxygen explosive hazard zones(CEHZs)were drawn.Furthermore,a simple practical index was proposed to quantitatively determine the gas explosion risk in the longwall goaf.The results showed that the CEHZs mainly focus on the intake side where the risk of gas explosion is greatest.The CEHZ is reduced with increasing air quantity.Moreover,the higher the gas emission,the larger the CEHZ,which moves towards the intake side at low goaf heights and shifts to the deeper parts of the goaf at high heights.In addition,the risk of gas explosion is reduced as air quantities increase,but when gas emissions increase to a higher level(greater than 50 m3/min),the volume of the CEHZ does not decrease with the increase of air quantity,and the risk of gas explosion no longer shows a linear downward trend.This study is of significance as it seeks to reduce gas explosion accidents and improve mine production safety.
基金This work is supported by the National Natural Science Foundation of China(51974135,51704094)the National Key Research and Development Program of China(2016YFC0600802).
文摘The ultimately exposed roof area(UERA)of goaf is crucial to the safety and economics of underground mining.The prediction models do not consider the mechanical weakness of rock mass and ignore the influence of the joint damage factor,causing a large predicted exposure area with a high roof falling risk.This work adopted joint damage factor to derive a new UERA prediction model.The relationships between the UERA(S)and the span ratio(m),the density(k)and the diameter of fracture(d)were analysed by the new prediction model.The results showed that the exposed area S and the span ratio m have a U-shaped curve relationship.The S decreases with the increase of m and then increases when m is beyond 2.The exposed roof area S is in an inversely proportional power-law relationship with the fracture surface density k,and the curvature of the S-k relationship curve decreases when d=0.5 and k>7,and S is close to 0.There is a negative correlation between S and the fracture surface diameter d,the curvature of the S-d curve decreases with the increase of d and k,and the variation rate increases first and then decreases with the increase of d;when k=0.5 and d>9,S is close to 0.The predicted values of the UERA prediction model are 119.3,112.8,and 114.6 m2 with different joint damage parameters,which are slightly smaller than the actual critical exposure area of a roof(S=120 m2).The case study shows that the alternative prediction model is reasonable and acceptable and provides new theoretical support for the underground mining safety of sedimentary bauxite ore.
文摘Based on the classical static theory and static numerical simulation,the static method could not accurately reflect the stability of goaf where the rocks on the pillar and roof are influenced by Theological and blasting disturbance for a long time.According to the test from the site,an experimental study was made in Theological and dynamic disturbance.After that,on the basis of variable rock mechanics parameters from the experimental data,numerical simulation was used to analyze the vertical stress distribution of goaf,vertical displacement and plastic area of roof in the "deterioration" caused by Theological and blasting,which shows that the mechanics properties of the rock were greatly influenced by Theological,and dynamic disturbance.The results of the experimental study and numerical simulation show that the mechanics properties of rock are greatly influenced by Theological and dynamic disturbance.As a result,the stability of goaf is greatly reduced.Finally,by comparing golf monitoring results with the analysis of theoretical calculation,it was found that the results were approximately the same,which testifies the reliability of the method.This method provides a new way of studying the stability of goaf as well as laying a basic foundation for future safety management.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
基金supported by the National Science Foundation of China(No.41374129)Science and Technology Project of Shanxi Province(No.20100321066)Research and Development Project of National Major Scientifi c Research Equipment(No.ZDYZ2012-1-05-04)
文摘With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.
基金supported by the National Natural Science Foundation of China (No. 51374200)
文摘In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing support failure are summarized into geology and mining technology.Combining column lithology and composite beam theory,the key stratum of the rock strata is determined.A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars.The tributary area theory(TAT)is adopted to analyze the vertical load distribution of each pillar,and dynamic models of coal pillar instability and main roof fracture are established.Through key block instability analysis,two critical moments are established,of which critical moment A has the greater dynamic load strength.Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof.To reduce these negative effects,a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed:reinforcing stope supports in conjunction with reducing mining height,or drilling ground holes to pre-split the main roof.Based on a comprehensive consideration of economic factors and the two categories of support failure causes,the method of reinforcing stope supports while reducing mining height was selected for use on the mining site.