期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Tao and Golden Ratio: A Scientific View of Contemporary Acupunctural Principles through Geometry
1
作者 Adrián Ángel Inchauspe Erica Arakaki 《Chinese Medicine》 2023年第3期95-154,共60页
It is universally accepted that the philosophy of the Tao is the essence that animates the Chinese Cosmogony. Therefore, in last decades I have tried to consolidate its scientific background, looking for solid explana... It is universally accepted that the philosophy of the Tao is the essence that animates the Chinese Cosmogony. Therefore, in last decades I have tried to consolidate its scientific background, looking for solid explanations through Exact Sciences (“Between Heaven and Earth” Scientific Basis of the Action of Shao Yin: Lightning’s Physical-Mathematical Analysis”;“Is Traditional Chinese Medicine Definitely an Exact Science?”;“Euclidean Geometry and Traditional Chinese Medicine: Diving into the Real Origin of the Five Elements”;“Solitons: A Cutting-Edge Scientific Proposal Explaining the Mechanisms of Acupuntural Action”) Currently, research on Chinese medicine leads us—with Dr. Erica Arakaki, collaborator and assistant—to verify through a profound bibliographic review the application of Fibonacci’s Golden Ratio in the constitution of T’ai Ji Tu, adding yet more substance to the hypothesis of Acupuncture and demonstrating how said Chinese Ancient Science is not only an empirical knowledge but a wisdom derived from the most ancient exact science: Geometry. 展开更多
关键词 Five Elements SOLITON golden ratio Tao Diagram
下载PDF
The Golden Ratio Theorem: A Framework for Interchangeability and Self-Similarity in Complex Systems
2
作者 Alessandro Rizzo 《Advances in Pure Mathematics》 2023年第9期559-596,共38页
The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-simil... The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines. 展开更多
关键词 Conservation Law SELF-SIMILARITY INTERCHANGEABILITY golden ratio Complex Systems Dynamic Exchange Structural Stability Mathematical Modeling Theoretical Framework P vs NP Millennium Problem
下载PDF
The Most Irrational Number that Shows up Everywhere: The Golden Ratio
3
作者 Jiwon Choi Agegnehu Atena Wondimu Tekalign 《Journal of Applied Mathematics and Physics》 2023年第4期1185-1193,共9页
Since the time of the ancient Greeks, humans have been aware of this mathematical idea. Golden ratio is an irrational number that is symbolized by the Greek numeral phi (φ). One can find this ratio everywhere. It is ... Since the time of the ancient Greeks, humans have been aware of this mathematical idea. Golden ratio is an irrational number that is symbolized by the Greek numeral phi (φ). One can find this ratio everywhere. It is in nature, art, architecture, human body, etc. But this symbolism can result in a strong connection with mathematical nature. In this paper we will be discussing the connection between Fibonacci sequence (a series of numbers where every number is equal to the sum of two numbers before it) and Golden ratio. Secondly, how this mathematical idea shows up in a nature, such as sunflower and human DNA. 展开更多
关键词 The golden ratio Fibonacci Sequence NATURE
下载PDF
The Golden Ratio
4
作者 Csizmadia Jozsef 《Journal of Modern Physics》 2016年第14期1944-1948,共5页
The Lorentz transformation (if x = ct) is the same the golden ratio: .
关键词 Lorentz Transformation RELATIVITY golden ratio
下载PDF
Multi Parameters Golden Ratio and Some Applications
5
作者 Seyed Moghtada Hashemiparast Omid Hashemiparast 《Applied Mathematics》 2011年第7期808-815,共8页
The present paper is devoted to the generalized multi parameters golden ratio. Variety of features like two-dimensional continued fractions, and conjectures on geometrical properties concerning to this subject are als... The present paper is devoted to the generalized multi parameters golden ratio. Variety of features like two-dimensional continued fractions, and conjectures on geometrical properties concerning to this subject are also presented. Wider generalization of Binet, Pell and Gazale formulas and wider generalizations of symmetric hyperbolic Fibonacci and Lucas functions presented by Stakhov and Rozin are also achieved. Geometrical applications such as applications in angle trisection and easy drawing of every regular polygons are developed. As a special case, some famous identities like Cassini’s, Askey’s are derived and presented, and also a new class of multi parameters hyperbolic functions and their properties are introduced, finally a generalized Q-matrix called Gn-matrix of order n being a generating matrix for the generalized Fibonacci numbers of order n and its inverse are created. The corresponding code matrix will prevent the attack to the data based on previous matrix. 展开更多
关键词 GENERALIZED golden ratio Trisection Q-MATRIX FIBONACCI Lucas Gazale Casseni
下载PDF
Obtaining a New Representation for the Golden Ratio by Solving a Biquadratic Equation
6
作者 Leonardo Mondaini 《Journal of Applied Mathematics and Physics》 2014年第13期1149-1152,共4页
In the present work we show how different ways to solve biquadratic equations can lead us to different representations of its solutions. A particular equation which has the golden ratio and its reciprocal as solutions... In the present work we show how different ways to solve biquadratic equations can lead us to different representations of its solutions. A particular equation which has the golden ratio and its reciprocal as solutions is shown as an example. 展开更多
关键词 golden ratio ALGEBRAIC EQUATIONS RECREATIONAL MATHEMATICS HISTORY of MATHEMATICS
下载PDF
Design of Band Stop Filter with Frequency Selective Surfaces Analysis by Implementing the Golden Ratio Rule
7
作者 Mehmet Duman Merve Guney Duman 《材料科学与工程(中英文B版)》 2017年第2期77-80,共4页
下载PDF
The Golden Ratio and Loshu-Fibonacci Diagram:Novel Research View on Relationship of Chinese Medicine and Modern Biology
8
作者 陈兆学 黄运坤 孙迎 《Chinese Journal of Integrative Medicine》 SCIE CAS 2014年第2期148-154,共7页
Associating geometric arrangements of 9 Loshu numbers modulo 5, investigating property of golden rectangles and characteristics of Fibonacci sequence modulo 10 as well as the two subsequences of its modular sequence b... Associating geometric arrangements of 9 Loshu numbers modulo 5, investigating property of golden rectangles and characteristics of Fibonacci sequence modulo 10 as well as the two subsequences of its modular sequence by modulo 5, the Loshu-Fibonacci Diagram is created based on strict logical deduction in this paper, which can disclose inherent relationship among Taiji sign, Loshu and Fibonacci sequence modulo 10 perfectly and unite such key ideas of holism, symmetry, holographic thought and yin-yang balance pursuit from Chinese medicine as a whole. Based on further analysis and reasoning, the authors discover that taking the golden ratio and Loshu-Fibonacci Diagram as a link, there is profound and universal association existing between researches of Chinese medicine and modern biology. 展开更多
关键词 Chinese medicine the golden ratio golden rectangle Loshu Taiji sign Fibonacci sequence Loshu-Fibonacci Diagram
原文传递
S-shaped growth curves in fermentations and golden ratio
9
作者 Sergey P.Klykov 《International Journal of Biomathematics》 SCIE 2020年第3期107-136,共30页
A model of the growth curve of microorganisms was proposed,which reveals a relation-ship with the number of a‘golden section’,1.618…,for main parameters of the growth curves.The treatment mainly concerns the ratio ... A model of the growth curve of microorganisms was proposed,which reveals a relation-ship with the number of a‘golden section’,1.618…,for main parameters of the growth curves.The treatment mainly concerns the ratio of the maximum asymptotic value of biomass in the phase of slow growth to the real value of biomass accumulation at the end of exponential growth,which is equal to thc square of the'golden section',i.e.,2.618.There are a few relevant theorems to explain these facts.New,yet simpler,methods were considered for deterrmining the model parameters based on hyperbolic functions.A comparison was made with one of the alternative models to demonstrate the advantage of the proposed model.The proposed model should be useful to apply at various stages of fermentation in scientific and industrial units.Further,the model could give a new impetus to the development of new mathematical knowledge regarding the algebra of the‘golden section'as a whole,as well as in connection with the introduction of a new equation at decomposing of any roots with any degrees for differences between constants and/or variables. 展开更多
关键词 golden section golden ratio modeling fermentation S-shaped curves oxy-gen restriction cells numbers theory
原文传递
Non Degeneration of Fibonacci Series, Pascal’s Elements and Hex Series
10
作者 Balasubramani Prema Rangasamy 《Advances in Pure Mathematics》 2020年第7期393-404,共12页
Generally Fibonacci series and Lucas series are the same, they converge to golden ratio. After I read Fibonacci series, I thought, is there or are there any series which converges to golden ratio. Because of that I ex... Generally Fibonacci series and Lucas series are the same, they converge to golden ratio. After I read Fibonacci series, I thought, is there or are there any series which converges to golden ratio. Because of that I explored the inter relations of Fibonacci series when I was intent on Fibonacci series in my difference parallelogram. In which, I found there is no degeneration on Fibonacci series. In my thought, Pascal triangle seemed like a lower triangular matrix, so I tried to find the inverse for that. In inverse form, there is no change against original form of Pascal elements matrix. One day I played with ring magnets, which forms hexagonal shapes. Number of rings which forms Hexagonal shape gives Hex series. In this paper, I give the general formula for generating various types of Fibonacci series and its non-degeneration, how Pascal elements maintain its identities and which shapes formed by hex numbers by difference and matrices. 展开更多
关键词 Fibonacci Series Lucas Series golden ratio Various Type of Fibonacci Series Generated by Matrices Matrix Operations on Pascal’s Elements and Hex Numbers
下载PDF
观察距离与上前牙宽度比例的相关性
11
作者 张华坤 朱梅 《解剖学杂志》 CAS 2024年第4期339-342,共4页
目的:研究平视时不同观察距离与上前牙宽度比例关系的变化规律,为研究及临床确定上前牙宽度提供参考。方法:以牙体形态正常、牙列整齐、微笑美观的男生及女生的天然牙列作为研究对象,制取上、下颌牙石膏模型,分别在20、40、80、60、110... 目的:研究平视时不同观察距离与上前牙宽度比例关系的变化规律,为研究及临床确定上前牙宽度提供参考。方法:以牙体形态正常、牙列整齐、微笑美观的男生及女生的天然牙列作为研究对象,制取上、下颌牙石膏模型,分别在20、40、80、60、110、140 cm的距离拍摄上颌牙模正面照片,在AutoCAD 2015中进行测量,以P=0.05为检验水准,各组均数经检验符合正态分布后,左、右侧均数比较采用配对设计均数比较的t检验,不同距离拍摄的上前牙视觉宽度比值均数的比较采用随机区组设计资料的方差分析。结果:20 cm距离拍摄组上前牙宽度比例与其他距离拍摄的上前牙宽度比例间差异有统计学意义,40 cm及以上距离拍摄组上前牙宽度比例间差异无统计学意义。临床常用观察距离(60 cm),上颌侧切牙与中切牙比值为0.75±0.05,上颌尖牙与侧切牙比值为0.81±0.07;上颌前牙宽度百分比为:右尖牙(12.28±0.56)%,右侧切牙(15.61±0.71)%,右中切牙(21.42±0.78)%,左中切牙(21.57±0.67)%,左侧切牙(16.12±0.83)%,左尖牙(12.99±0.87)%。结论:平视时40 cm及以上的观察距离对上前牙宽度比例无影响,研究或临床上观察上前牙宽度时,应在研究对象的正前方,观察距离以大于40 cm为宜。 展开更多
关键词 上前牙 牙齿比例 黄金百分比 黄金比例 距离 牙科美学
下载PDF
Simple Formulas of πin Terms of Φ
12
作者 Angelo Pignatelli 《Journal of Applied Mathematics and Physics》 2024年第5期1904-1918,共15页
The paper presents a novel exploration of π through a re-calculation of formulas using Archimedes’ algorithm, resulting in the identification of a general family equation and three new formulas involving the golden ... The paper presents a novel exploration of π through a re-calculation of formulas using Archimedes’ algorithm, resulting in the identification of a general family equation and three new formulas involving the golden ratio Φ, in the form of infinite nested square roots. Some related geometrical properties are shown, enhancing the link between the circle and the golden ratio. Applying the same criteria, a fourth formula is given, that brings to the known Dixon’s squaring the circle approximation, thus an easier approach to this problem is suggested, by a rectangle with both sides proportional to the golden ratio Φ. 展开更多
关键词 Π Φ golden ratio Squaring the Circle
下载PDF
Ratio of In-Sphere Volume to Polyhedron Volume of the Great Pyramid Compared to Selected Convex Polyhedral Solids 被引量:4
13
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2021年第1期41-56,共16页
The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em>&... The architecture of the Great Pyramid at Giza is based on fascinating golden mean geometry. Recently the ratio of the in-sphere volume to the pyramid volume was calculated. One yields as result <em>R</em><sub><em>V</em></sub> = π <span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8901;</span></span> <em><em style="white-space:normal;">φ</em></em><sup>5</sup>, where <img src="Edit_83decbce-7252-44ed-a822-fef13e43fd2a.bmp" alt="" /> is the golden mean. It is important that the number <em>φ</em><sup>5</sup> is a fundamental constant of nature describing phase transition from microscopic to cosmic scale. In this contribution the relatively small volume ratio of the Great Pyramid was compared to that of selected convex polyhedral solids such as the <em>Platonic </em>solids respectively the face-rich truncated icosahedron (bucky ball) as one of <em>Archimedes</em>’ solids leading to effective filling of the polyhedron by its in-sphere and therefore the highest volume ratio of the selected examples. The smallest ratio was found for the Great Pyramid. A regression analysis delivers the highly reliable volume ratio relation <img src="Edit_79e766ce-5580-4ae0-a706-570e0f3f1bd8.bmp" alt="" />, where <em>nF</em> represents the number of polyhedron faces and b approximates the silver mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to adjust the <em>R</em><sub><em>V</em></sub> relation more reliably. 展开更多
关键词 POLYHEDRON Great Pyramid Platonic Solids Volume-Area ratio In-Sphere and In-Ellipsoid Polyhedral Void Space golden and Silver Mean
下载PDF
求解非光滑鞍点问题的黄金比率原始对偶算法
14
作者 聂佳琳 龙宪军 《数学物理学报(A辑)》 CSCD 北大核心 2024年第4期1080-1091,共12页
该文提出了一类新的黄金比率原始对偶算法求解非光滑鞍点问题,该算法是完全可分裂的.在一定的假设下,证明了由算法迭代产生的序列收敛到问题的解,同时证明了O(1/N)遍历收敛率.数值实验表明该文提出的算法比Zhu,Liu和Tran-Ding文中的算... 该文提出了一类新的黄金比率原始对偶算法求解非光滑鞍点问题,该算法是完全可分裂的.在一定的假设下,证明了由算法迭代产生的序列收敛到问题的解,同时证明了O(1/N)遍历收敛率.数值实验表明该文提出的算法比Zhu,Liu和Tran-Ding文中的算法有更少的迭代步数和计算机耗时. 展开更多
关键词 鞍点问题 黄金比率 原始对偶算法 收敛性 遍历收敛率
下载PDF
例说黄金分割定律在平面设计中的应用
15
作者 杨彦辉 《包装工程》 CAS 北大核心 2024年第12期233-242,共10页
目的旨在分析现代视觉平面设计中黄金分割定律的应用研究。方法以黄金分割概念和种类为基础,对于13种黄金分割图例结合几种常见的黄金分割应用(如黄金线段分割、黄金矩形、黄金螺旋线、根号矩形、斐波那契数列),理解分析其应用原理在视... 目的旨在分析现代视觉平面设计中黄金分割定律的应用研究。方法以黄金分割概念和种类为基础,对于13种黄金分割图例结合几种常见的黄金分割应用(如黄金线段分割、黄金矩形、黄金螺旋线、根号矩形、斐波那契数列),理解分析其应用原理在视觉平面设计中的应用。结果使平面设计作品在视觉上得到最佳呈现,客观设计思维与逻辑达到和谐与平衡。结论通过学习黄金分割理论与知识,结合现代设计灵活运用黄金分割原理,认识设计的造型规律、比例关系,在各类设计中发现其设计关系的黄金比例之美,认识黄金分割所蕴含的设计美学意义,并理解这种美学意义在自然界中的客观与合理性,并将这种客观规律充分利用在现代设计当中,从而认识现代设计的客观理性思维。 展开更多
关键词 黄金分割定律 平面设计 黄金比例 黄金线段分割 黄金矩形 黄金螺旋线 根号矩形 斐波那契数列
下载PDF
席曼诺夫斯基《音乐会序曲》(Op.12)主题动机发展及其结构力研究
16
作者 李卓铭 李小诺 《黄钟(武汉音乐学院学报)》 北大核心 2024年第1期140-151,168,共13页
席曼诺夫斯基的《音乐会序曲》(Op.12)是其第一部管弦乐作品,该作品在深受“青年波兰”创作理念影响的同时,管弦语法又具有浓厚的个人风格。从西方传统结构观念来看,该曲整体上体现了奏鸣、变奏和三部性结构原则,呈示部与再现部通过精... 席曼诺夫斯基的《音乐会序曲》(Op.12)是其第一部管弦乐作品,该作品在深受“青年波兰”创作理念影响的同时,管弦语法又具有浓厚的个人风格。从西方传统结构观念来看,该曲整体上体现了奏鸣、变奏和三部性结构原则,呈示部与再现部通过精细化的缩减构成了不同的黄金分割比例;从内部发展来看,通过将主题的核心动机变形,并采取点式分解化、层式立体化等手法,获得了多调性对位以及“微复调”等不同色彩的音响结构力。 展开更多
关键词 席曼诺夫斯基 音乐会序曲 原形与变形 混合曲式 黄金分割
下载PDF
数学几何美学在服装设计中的应用 被引量:1
17
作者 张泽潭 《染整技术》 CAS 2024年第2期99-101,共3页
随着人们对服饰的艺术性和实用性要求的日益提高,设计师开始将数学引入服装设计中。数学中的形状、比例和对称性等几何美学为服装设计带来了新的视角。数学与服装设计跨学科的融合丰富了服装设计的表现形式,提高了功能性和审美性。
关键词 服装设计 几何美学 数学原理 黄金比例
下载PDF
水蛭和黄连随证施量策略在糖尿病肾病治疗中的运用
18
作者 高晴 姬航宇 连凤梅 《吉林中医药》 2024年第1期46-48,共3页
糖尿病肾病是主要的糖尿病微血管并发症之一,该疾病早中期,患者常没有明显的临床症状,但会有蛋白尿,ACR升高等异常指标,因此在准确辨证基础上,应用针对降蛋白尿和降糖的中药水蛭和黄连,往往能获得较好的疗效。对于此类药物的剂量,要结... 糖尿病肾病是主要的糖尿病微血管并发症之一,该疾病早中期,患者常没有明显的临床症状,但会有蛋白尿,ACR升高等异常指标,因此在准确辨证基础上,应用针对降蛋白尿和降糖的中药水蛭和黄连,往往能获得较好的疗效。对于此类药物的剂量,要结合随证施量策略,选定调整剂量的指征,找准变量的时机,控制好药物用量的范围,才能在确保用药安全的基础上取得最佳疗效。 展开更多
关键词 糖尿病肾病 尿微量白蛋白肌酐比值 随证施量 水蛭 黄连
下载PDF
基于BP神经网络马尔科夫模型的径流量预测 被引量:25
19
作者 王义民 于兴杰 +1 位作者 畅建霞 黄强 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2008年第5期14-17,57,共5页
讨论了马尔科夫链状态划分的黄金分割率法和"马氏性"检验法,并针对BP神经网络预测和马尔科夫预测的优缺点,提出了BP神经网络与马尔科夫相耦合的BP神经网络马尔科夫模型,以石泉水库年入库径流量为例,验证了该方法的可行性.
关键词 BP神经网络 马尔柯夫预测 黄金分割率 “马氏性”检验 径流量预测
下载PDF
基于黄金分割点遗传算法的交通信号多目标优化 被引量:12
20
作者 杨文臣 张轮 +1 位作者 饶倩 张孟 《交通运输系统工程与信息》 EI CSCD 北大核心 2013年第5期48-55,共8页
针对遗传算法求解交通信号配时模型容易陷入局部最优的问题,提出一种基于黄金分割点遗传算法的城市交通信号建模与优化方法.该方法采用数值模拟分析各交通信号常用性能指标间的相关性及其与配时参数间的关联程度,选取延误、停车率和通... 针对遗传算法求解交通信号配时模型容易陷入局部最优的问题,提出一种基于黄金分割点遗传算法的城市交通信号建模与优化方法.该方法采用数值模拟分析各交通信号常用性能指标间的相关性及其与配时参数间的关联程度,选取延误、停车率和通过量构建相对评价指标体系;并采用加权系数法建立交通信号多目标配时模型;同时,设计一种基于黄金分割点的自适应遗传算法对交通信号配时模型进行求解.该算法采用实数编码,引入黄金分割点算子增强遗传算法的局部搜索能力.以典型城市单交叉口进行试验,设计多种交通场景,在三种控制策略下采用数值计算和VISSIM仿真对提出的模型及算法进行效用评价.结果表明,所设计的算法求解质量好和计算效率高,提出的配时模型具有良好的控制效果. 展开更多
关键词 智能交通 交通信号 相关性分析 配时模型 遗传算法 黄金分割
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部