期刊文献+
共找到2,226篇文章
< 1 2 112 >
每页显示 20 50 100
Graph neural network-based scheduling for multi-UAV-enabled communications in D2D networks 被引量:1
1
作者 Pei Li Lingyi Wang +3 位作者 Wei Wu Fuhui Zhou Baoyun Wang Qihui Wu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期45-52,共8页
In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission... In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means. 展开更多
关键词 Unmanned aerial vehicle D2 Dcommunication graph neural network Power control Position planning
下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
2
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 graph neural network Dynamic interwell connectivity Production-injection splitting Attention mechanism Multi-layer reservoir
下载PDF
Physical information-enhanced graph neural network for predicting phase separation
3
作者 张亚强 王煦文 +1 位作者 王雅楠 郑文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期278-283,共6页
Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics s... Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here,we present a physical information-enhanced graph neural network(PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers.The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems. 展开更多
关键词 graph neural network phase separation machine learning dissipative particle dynamics
下载PDF
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks
4
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
下载PDF
HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological Relationships for Encrypted Traffic Classification
5
作者 Rongwei Yu Xiya Guo +1 位作者 Peihao Zhang Kaijuan Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第11期2643-2664,共22页
Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traff... Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traffic essential.Existing methods for detecting encrypted traffic face two significant challenges.First,relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic.Second,machine learning and convolutional neural network methods lack sufficient network expression capabilities,hindering the full exploration of traffic’s potential characteristics.To address these limitations,this study introduces a traffic classification method that utilizes time relationships and a higher-order graph neural network,termed HGNN-ETC.This approach fully exploits the original byte information and chronological relationships of traffic packets,transforming traffic data into a graph structure to provide the model with more comprehensive context information.HGNN-ETC employs an innovative k-dimensional graph neural network to effectively capture the multi-scale structural features of traffic graphs,enabling more accurate classification.We select the ISCXVPN and the USTC-TK2016 dataset for our experiments.The results show that compared with other state-of-the-art methods,our method can obtain a better classification effect on different datasets,and the accuracy rate is about 97.00%.In addition,by analyzing the impact of varying input specifications on classification performance,we determine the optimal network data truncation strategy and confirm the model’s excellent generalization ability on different datasets. 展开更多
关键词 Encrypted network traffic graph neural network traffic classification deep learning
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
6
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism
7
作者 Lanze Zhang Yijun Gu Jingjie Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1701-1731,共31页
Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggre... Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks. 展开更多
关键词 Heterophilic graph graph neural network graph representation learning failure of the homophily assumption
下载PDF
Calculating real-time surface deformation for large active surface radio antennas using a graph neural network
8
作者 Zihan Zhang Qian Ye +2 位作者 Li Fu Qinghui Liu Guoxiang Meng 《Astronomical Techniques and Instruments》 CSCD 2024年第5期267-274,共8页
This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible f... This paper presents an innovative surrogate modeling method using a graph neural network to compensate for gravitational and thermal deformation in large radio telescopes.Traditionally,rapid compensation is feasible for gravitational deformation but not for temperature-induced deformation.The introduction of this method facilitates real-time calculation of deformation caused both by gravity and temperature.Constructing the surrogate model involves two key steps.First,the gravitational and thermal loads are encoded,which facilitates more efficient learning for the neural network.This is followed by employing a graph neural network as an end-to-end model.This model effectively maps external loads to deformation while preserving the spatial correlations between nodes.Simulation results affirm that the proposed method can successfully estimate the surface deformation of the main reflector in real-time and can deliver results that are practically indistinguishable from those obtained using finite element analysis.We also compare the proposed surrogate model method with the out-of-focus holography method and yield similar results. 展开更多
关键词 Large radio telescope Surface deformation Surrogate model graph neural network
下载PDF
Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting
9
作者 Xiuwei Hu Enlong Yu Xiaoyu Zhao 《Journal of Computer and Communications》 2024年第3期52-67,共16页
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods. 展开更多
关键词 Traffic Prediction Intelligent Traffic System Multi-Head Attention graph neural networks
下载PDF
Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification 被引量:3
10
作者 Ding Yao Zhang Zhi-li +4 位作者 Zhao Xiao-feng Cai Wei He Fang Cai Yao-ming Wei-Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期164-176,共13页
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th... With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models. 展开更多
关键词 graph neural network Hyperspectral image classification Deep hybrid network
下载PDF
Log Anomaly Detection Based on Hierarchical Graph Neural Network and Label Contrastive Coding 被引量:1
11
作者 Yong Fang Zhiying Zhao +1 位作者 Yijia Xu Zhonglin Liu 《Computers, Materials & Continua》 SCIE EI 2023年第2期4099-4118,共20页
System logs are essential for detecting anomalies,querying faults,and tracing attacks.Because of the time-consuming and labor-intensive nature of manual system troubleshooting and anomaly detection,it cannot meet the ... System logs are essential for detecting anomalies,querying faults,and tracing attacks.Because of the time-consuming and labor-intensive nature of manual system troubleshooting and anomaly detection,it cannot meet the actual needs.The implementation of automated log anomaly detection is a topic that demands urgent research.However,the prior work on processing log data is mainly one-dimensional and cannot profoundly learn the complex associations in log data.Meanwhile,there is a lack of attention to the utilization of log labels and usually relies on a large number of labels for detection.This paper proposes a novel and practical detection model named LCC-HGLog,the core of which is the conversion of log anomaly detection into a graph classification problem.Semantic temporal graphs(STG)are constructed by extracting the raw logs’execution sequences and template semantics.Then a unique graph classifier is used to better comprehend each STG’s semantic,sequential,and structural features.The classification model is trained jointly by graph classification loss and label contrastive loss.While achieving discriminability at the class-level,it increases the fine-grained identification at the instance-level,thus achieving detection performance even with a small amount of labeled data.We have conducted numerous experiments on real log datasets,showing that the proposed model outperforms the baseline methods and obtains the best all-around performance.Moreover,the detection performance degrades to less than 1%when only 10%of the labeled data is used.With 200 labeled samples,we can achieve the same or better detection results than the baseline methods. 展开更多
关键词 Log analysis anomaly detection contrastive learning graph neural network
下载PDF
Modeling Price-Aware Session-Based Recommendation Based on Graph Neural Network
12
作者 Jian Feng Yuwen Wang Shaojian Chen 《Computers, Materials & Continua》 SCIE EI 2023年第7期397-413,共17页
Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neura... Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neural Network often has information loss when constructing session graphs;Inadequate consideration is given to influencing factors,such as item price,and users’dynamic interest evolution is not taken into account.A new session recommendation model called Price-aware Session-based Recommendation(PASBR)is proposed to address these limitations.PASBR constructs session graphs by information lossless approaches to fully encode the original session information,then introduces item price as a new factor and models users’price tolerance for various items to influence users’preferences.In addition,PASBR proposes a new method to encode user intent at the item category level and tries to capture the dynamic interest of users over time.Finally,PASBR fuses the multi-perspective features to generate the global representation of users and make a prediction.Specifically,the intent,the short-term and long-term interests,and the dynamic interests of a user are combined.Experiments on two real-world datasets show that PASBR can outperform representative baselines for SBR. 展开更多
关键词 Session-based recommendation graph neural network price-aware intention dynamic interest
下载PDF
Identification of Anomaly Scenes in Videos Using Graph Neural Networks
13
作者 Khalid Masood Mahmoud M.Al-Sakhnini +3 位作者 Waqas Nawaz Tauqeer Faiz Abdul Salam Mohammad Hamza Kashif 《Computers, Materials & Continua》 SCIE EI 2023年第3期5417-5430,共14页
Generally,conventional methods for anomaly detection rely on clustering,proximity,or classification.With themassive growth in surveillance videos,outliers or anomalies find ingenious ways to obscure themselves in the ... Generally,conventional methods for anomaly detection rely on clustering,proximity,or classification.With themassive growth in surveillance videos,outliers or anomalies find ingenious ways to obscure themselves in the network and make conventional techniques inefficient.This research explores the structure of Graph neural networks(GNNs)that generalize deep learning frameworks to graph-structured data.Every node in the graph structure is labeled and anomalies,represented by unlabeled nodes,are predicted by performing random walks on the node-based graph structures.Due to their strong learning abilities,GNNs gained popularity in various domains such as natural language processing,social network analytics and healthcare.Anomaly detection is a challenging task in computer vision but the proposed algorithm using GNNs efficiently performs the identification of anomalies.The Graph-based deep learning networks are designed to predict unknown objects and outliers.In our case,they detect unusual objects in the form of malicious nodes.The edges between nodes represent a relationship of nodes among each other.In case of anomaly,such as the bike rider in Pedestrians data,the rider node has a negative value for the edge and it is identified as an anomaly.The encoding and decoding layers are crucial for determining how statistical measurements affect anomaly identification and for correcting the graph path to the best possible outcome.Results show that the proposed framework is a step ahead of the traditional approaches in detecting unusual activities,which shows a huge potential in automatically monitoring surveillance videos.Performing autonomous monitoring of CCTV,crime control and damage or destruction by a group of people or crowd can be identified and alarms may be triggered in unusual activities in streets or public places.The suggested GNN model improves accuracy by 4%for the Pedestrian 2 dataset and 12%for the Pedestrian 1 dataset compared to a few state-of the-art techniques. 展开更多
关键词 graph neural network deep learning anomaly detection auto encoders
下载PDF
Collision-aware interactive simulation using graph neural networks
14
作者 Xin Zhu Yinling Qian +2 位作者 Qiong Wang Ziliang Feng Pheng‑Ann Heng 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期174-186,共13页
Deep simulations have gained widespread attention owing to their excellent acceleration performances.However,these methods cannot provide effective collision detection and response strategies.We propose a deep interac... Deep simulations have gained widespread attention owing to their excellent acceleration performances.However,these methods cannot provide effective collision detection and response strategies.We propose a deep interac-tive physical simulation framework that can effectively address tool-object collisions.The framework can predict the dynamic information by considering the collision state.In particular,the graph neural network is chosen as the base model,and a collision-aware recursive regression module is introduced to update the network parameters recursively using interpenetration distances calculated from the vertex-face and edge-edge tests.Additionally,a novel self-supervised collision term is introduced to provide a more compact collision response.This study extensively evaluates the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation efficiency. 展开更多
关键词 Deep physical simulation Collision-aware Continuous collision detection graph neural network
下载PDF
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
15
作者 Hai-Tao Jia Bo-Yang Zhang +4 位作者 Chao Huang Wen-Han Li Wen-Bo Xu Yu-Feng Bi Li Ren 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期44-54,共11页
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ... At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively. 展开更多
关键词 Feature information enhancement graph neural network Natural language processing Sparse knowledge graph(KG)inference
下载PDF
A Graph Neural Network Recommendation Based on Long-and Short-Term Preference
16
作者 Bohuai Xiao Xiaolan Xie Chengyong Yang 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3067-3082,共16页
The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregat... The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregation on the graph to generate long-term preference representations for the user in quick succession.However,user preferences are dynamic.With the passage of time and some trend guidance,users may generate some short-term preferences,which are more likely to lead to user-item interactions.A GNN recommendation based on long-and short-term preference(LSGNN)is proposed to address the above problems.LSGNN consists of four modules,using a GNN combined with the attention mechanism to extract long-term preference features,using Bidirectional Encoder Representation from Transformers(BERT)and the attention mechanism combined with Bi-Directional Gated Recurrent Unit(Bi-GRU)to extract short-term preference features,using Convolutional Neural Network(CNN)combined with the attention mechanism to add title and description representations of items,finally inner-producing long-term and short-term preference features as well as features of items to achieve recommendations.In experiments conducted on five publicly available datasets from Amazon,LSGNN is superior to state-of-the-art personalized recommendation techniques. 展开更多
关键词 Recommendation systems graph neural networks deep learning data mining
下载PDF
Subgraph Matching Using Graph Neural Network 被引量:2
17
作者 GnanaJothi Raja Baskararaja MeenaRani Sundaramoorthy Manickavasagam 《Journal of Intelligent Learning Systems and Applications》 2012年第4期274-278,共5页
Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial neural network model which is capable of processing general types of graph structured data. A graph ma... Subgraph matching problem is identifying a target subgraph in a graph. Graph neural network (GNN) is an artificial neural network model which is capable of processing general types of graph structured data. A graph may contain many subgraphs isomorphic to a given target graph. In this paper GNN is modeled to identify a subgraph that matches the target graph along with its characteristics. The simulation results show that GNN is capable of identifying a target sub-graph in a graph. 展开更多
关键词 SUBgraph Matching graph neural network Backpropagation RECURRENT neural network FEEDFORWARD neural network
下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
18
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
下载PDF
Accurate and efficient floor localization with scalable spiking graph neural networks 被引量:1
19
作者 Fuqiang Gu Fangming Guo +6 位作者 Fangwen Yu Xianlei Long Chao Chen Kai Liu Xuke Hu Jianga Shang Songtao Guo 《Satellite Navigation》 SCIE EI CSCD 2024年第1期191-206,共16页
Floor localization is crucial for various applications such as emergency response and rescue,indoor positioning,and recommender systems.The existing floor localization systems have many drawbacks,like low accuracy,poo... Floor localization is crucial for various applications such as emergency response and rescue,indoor positioning,and recommender systems.The existing floor localization systems have many drawbacks,like low accuracy,poor scalability,and high computational costs.In this paper,we first frame the problem of floor localization as one of learning node embeddings to predict the floor label of a subgraph.Then,we introduce FloorLocator,a deep learning-based method for floor localization that integrates efficient spiking neural networks with powerful graph neural networks.This approach offers high accuracy,easy scalability to new buildings,and computational efficiency.Experimental results on using several public datasets demonstrate that FloorLocator outperforms state-of-the-art methods.Notably,in building B0,FloorLocator achieved recognition accuracy of 95.9%,exceeding state-of-the-art methods by at least 10%.In building B1,it reached an accuracy of 82.1%,surpassing the latest methods by at least 4%.These results indicate FloorLocator’s superiority in multi-floor building environment localization. 展开更多
关键词 Indoor positioning Deep learning Floor localization Spiking neural networks graph neural networks
原文传递
A Comprehensive Survey on Trustworthy Graph Neural Networks:Privacy,Robustness,Fairness,and Explainability
20
作者 Enyan Dai Tianxiang Zhao +5 位作者 Huaisheng Zhu Junjie Xu Zhimeng Guo Hui Liu Jiliang Tang Suhang Wang 《Machine Intelligence Research》 EI CSCD 2024年第6期1011-1061,共51页
Graph neural networks(GNNs)have made rapid developments in the recent years.Due to their great ability in modeling graph-structured data,GNNs are vastly used in various applications,including high-stakes scenarios suc... Graph neural networks(GNNs)have made rapid developments in the recent years.Due to their great ability in modeling graph-structured data,GNNs are vastly used in various applications,including high-stakes scenarios such as financial analysis,traffic predictions,and drug discovery.Despite their great potential in benefiting humans in the real world,recent study shows that GNNs can leak private information,are vulnerable to adversarial attacks,can inherit and magnify societal bias from training data and lack inter-pretability,which have risk of causing unintentional harm to the users and society.For example,existing works demonstrate that at-tackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph.GNNs trained on social networks may embed the discrimination in their decision process,strengthening the undesirable societal bias.Consequently,trust-worthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users'trust in GNNs.In this pa-per,we give a comprehensive survey of GNNs in the computational aspects of privacy,robustness,fairness,and explainability.For each aspect,we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs.We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthi-ness. 展开更多
关键词 graph neural networks(GNNs) TRUSTWORTHY PRIVACY ROBUSTNESS FAIRNESS explainability
原文传递
上一页 1 2 112 下一页 到第
使用帮助 返回顶部