期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Transcriptional regulation of MdPIN7 by MdARF19 during gravityinduced formation of adventitious root GSA in self-rooted apple stock
1
作者 Zenghui Wang Xuemei Yang +5 位作者 Linyue Hu Wei Liu Lijuan Feng Xiang Shen Yanlei Yin Jialin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1073-1084,共12页
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the... Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals. 展开更多
关键词 APPLE Self-rooted stock GRAVITY MdARF19 MdPIN7 gravitropic set-point angle Transcriptional regulation
下载PDF
The IDD Transcription Factors:Their Functions in Plant Development and Environmental Response
2
作者 Jing Liu Defeng Shu +5 位作者 Zilong Tan Mei Ma Huanhuan Yang Ning Guo Shipeng Li Dayong Cui 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期63-79,共17页
INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversi... INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture. 展开更多
关键词 INDETERMINATE DOMAIN flowering time root development shoot gravitropism plant immunity hormonal signaling environmental responses
下载PDF
PROG1 acts upstream of LAZY1 to regulate rice tiller angle as a repressor 被引量:4
3
作者 Han Zhang Xiang Li +5 位作者 Dajun Sang Linzhou Huang Yuqi Song Mengchen Du Jiajia Cao Wenguang Wang 《The Crop Journal》 SCIE CSCD 2023年第2期386-393,共8页
Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene ... Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle. 展开更多
关键词 RICE Tiller angle GRAVITROPISM LAZY1 PROG1
下载PDF
A Botanist’s Cognitive View on Plant Growth: Cross-Talk between Developmental and Sensitivity Networks
4
作者 Dhananjay K. Pandey Bhupendra Chaudhary 《American Journal of Plant Sciences》 2016年第15期2307-2322,共17页
An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive succes... An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive success. Plants succeed through the deployment of moderators controlling polar auxin-transport determining organ bending. Stimulus-specific effectors can be synthesized by the outer peripheral cells at the bending sites where they target highly conserved cellular processes and potentially persuade the plant sensitivity at large. Remarkably, the peripheral cells require different time-intervals to achieve the threshold expression-levels of stimulus-specific molecular responders. After stimulus perception, tropic curvatures (especially at growing root-apices) are duly coordinated via integrated chemical and electrical signalling which is the key to cellular communications. Thus, the acquired phenotypic alterations are the perplexed outcome of plant’s developmental pace, complemented by the sensitivity. A novel aspect of this study is to advance our understanding of plant developmental-programming and the extent of plant-sensitivity, determining the plant growth and their future applications. 展开更多
关键词 TROPISM ANISOTROPY Plant Development Polar Auxin Transport Phototropic Response gravitropic Response
下载PDF
LAZY1 controls rice shoot gravitropism through regulating polar auxin transport 被引量:96
5
作者 Peijin Li Yonghong Wang +6 位作者 Qian Qian Zhiming Fu Mei Wang Dali Zeng Baohua Li Xiujie Wang Jiayang Li 《Cell Research》 SCIE CAS CSCD 2007年第5期402-410,共9页
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yiel... Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants. 展开更多
关键词 LAZY1 GRAVITROPISM auxin transport tiller angle plant architecture Oryza sativa L.
下载PDF
The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking 被引量:5
6
作者 YuanWang Wen-Hui Lin Xu Chen Hong-Wei Xue 《Cell Research》 SCIE CAS CSCD 2009年第10期1191-1204,共14页
Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormon... Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormonerelated cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism. 展开更多
关键词 ARABIDOPSIS 5PTase13 vesicle trafficking GRAVITROPISM polar auxin transport
下载PDF
Auxin distribution and transport during embryogenesis and seed germi-nation of Arabidopsis 被引量:4
7
作者 NiDA WangLJ 《Cell Research》 SCIE CAS CSCD 2001年第4期273-278,共6页
Auxin distribution during embryogenesis and seed germination were studied with transgenic Arabidopsis plants expressing GUS gene driven by a synthetic DR5 promoter,an auxin responsive promoter. The results showed that... Auxin distribution during embryogenesis and seed germination were studied with transgenic Arabidopsis plants expressing GUS gene driven by a synthetic DR5 promoter,an auxin responsive promoter. The results showed that GUS activity is higher in ends of hypophysis and cotyledon primordia of heart-, torpedo- and cotyledon-stage embryos, leaf tip area, lateral root primordia, root apex and cotyledon of young seedlings. And GUS accumulated in root apex of the seedlings grown on auxin transport inhibitor containing media. All these suggested that above-mentioned part of the organs and tissues have a higher level of auxin, and auxin polar transport inhibitor could cause the accumulation of auxin in root apex. And auxin transport inhibitor also resulted in aberration of Arabidopsis leaf pattern formation, root gravitropism and elongation. 展开更多
关键词 Germination ARABIDOPSIS Biological Transport GRAVITROPISM Indoleacetic Acids Research Support Non-U.S. Gov't Seeds Triiodobenzoic Acids
下载PDF
Brassinosteroid-regulated plant growth and development and gene expression in soybean 被引量:2
8
作者 Wenchao Yin Nana Dong +5 位作者 Mei Niu Xiaoxing Zhang Lulu Li Jun Liu Bin Liu Hongning Tong 《The Crop Journal》 SCIE CAS CSCD 2019年第3期411-418,共8页
Brassinosteroids(BRs) are endogenous phytohormones that play important roles in regulating plant growth and development.In this study, we evaluated the effects of brassinolide(BL, one of the active BRs) on soybean and... Brassinosteroids(BRs) are endogenous phytohormones that play important roles in regulating plant growth and development.In this study, we evaluated the effects of brassinolide(BL, one of the active BRs) on soybean and identified roles of the hormone in regulating multiple aspects of plant growth and development.BL application promoted hypocotyl and epicotyl elongation in the light but blocked epicotyl elongation in the dark.High levels of castasterone and BL accumulated in light-grown plants.BL disrupted shoot negative gravitropism, whereas gibberellin did not.BL delayed leaf senescence.Transcriptome analysis showed that BL induced cell wall-modifying genes and auxin-associated genes but suppressed a class of WRKY genes involved in senescence and stress responses,showing the complex roles of BRs in multiple biological processes. 展开更多
关键词 SOYBEAN BRASSINOSTEROID SENESCENCE GRAVITROPISM WRKY
下载PDF
Identification of a Gravitropism-Deficient Mutant in Rice 被引量:2
9
作者 HE Yan SHI Yong-feng +3 位作者 ZHANG Xiao-bo WANG Hui-mei XU Xia WU Jian-li 《Rice science》 SCIE CSCD 2017年第2期109-118,共10页
A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate(EMS) mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginn... A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate(EMS) mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96(gd M96), which was mapped to a region of 506 kb flanked by markers RM5960 and In Del8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1. 展开更多
关键词 PLANT architecture GRAVITROPISM LAZY1 GENE MAPPING MUTANT
下载PDF
The chloroplast-localized protein LTA1 regulates tiller angle and yield of rice 被引量:2
10
作者 Xiaowu Pan Yongchao Li +8 位作者 Haiwen Zhang Wenqiang Liu Zheng Dong Licheng Liu Sanxiong Liu Xinnian Sheng Jun Min Rongfeng Huang Xiaoxiang Li 《The Crop Journal》 SCIE CSCD 2022年第4期952-961,共10页
Plant architecture strongly influences rice grain yield.We report the cloning and characterization of the LTA1 gene,which simultaneously controls tiller angle and yield of rice.LTA1 encodes a chloroplastlocalized prot... Plant architecture strongly influences rice grain yield.We report the cloning and characterization of the LTA1 gene,which simultaneously controls tiller angle and yield of rice.LTA1 encodes a chloroplastlocalized protein with a conserved YbaB DNA-binding domain,and is highly expressed in photosynthetic tissues including leaves and leaf sheaths.Disrupting the function of LTA1 leads to large tiller angle and yield reduction of rice.LTA1 affects the gravity response by mediating the distribution of endogenous auxin,thereby regulating the tiller angle.An lta1 mutant showed abnormal chloroplast development and decreased chlorophyll content and photosynthetic rate,in turn leading to reduction of rice yield.Our findings shed light on the genetic basis of tiller angle and provide a potential gene resource for the improvement of plant architecture and rice yield. 展开更多
关键词 RICE YIELD Tiller angle GRAVITROPISM Chloroplast development
下载PDF
Preliminary study on a gravity-insensitive rice mutant 被引量:2
11
作者 金静 朱诚 +1 位作者 张红心 孙宗修 《Journal of Zhejiang University Science》 EI CSCD 2004年第2期144-148,共5页
A gravity-insensitive mutant was isolated from rice (Oryza sativa L. cv. Zhonghua 11) transformed by Agrobacterium tumefaciens. The mutant's shoot growth (prostrate growth) was insensitive to gravity; whereas root... A gravity-insensitive mutant was isolated from rice (Oryza sativa L. cv. Zhonghua 11) transformed by Agrobacterium tumefaciens. The mutant's shoot growth (prostrate growth) was insensitive to gravity; whereas root growth displayed a normal positive gravitropism. Histological observation of root caps and leaf sheaths indicated that there was no significant difference in the number and size of amyloplasts in cells of the mutant and cells of the wild type. 展开更多
关键词 Oryza sativa L. Gravity-insensitive mutant GRAVITROPISM AMYLOPLAST
下载PDF
Characterization of wavy root 1,an agravitropism allele,reveals the functions of OsPIN2 in fine regulation of auxin transport and distribution and in ABA biosynthesis and response in rice(Oryza sativa L.) 被引量:1
12
作者 Wenqiang Li Minjuan Zhang +11 位作者 Lei Qiao Yunbo Chen Dapeng Zhang Xiuqing Jing Pengfei Gan Yangbin Huang Junru Gao Wenting Liu Chunhai Shi Hongchang Cui Haifeng Li Kunming Chen 《The Crop Journal》 SCIE CSCD 2022年第4期980-992,共13页
Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for... Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture.However,the mechanism has not been elucidated in most crops.We characterized a rice agravitropism allele,wavy root 1(war1),a loss-of-function allele in OsPIN2,which encodes an auxin efflux transporter.With loss of OsPIN2 function,war1 leads to altered root system architecture including wavy root,larger root distribution angle,and shallower root system due to the loss of gravitropic perception in root tips.In the war1 mutant,polar auxin transport was disrupted in the root tip,leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells.Amyloplast sedimentation,an important process in gravitropic sensing,was also decreased in root tip columella cells.The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport,distribution and levels,and amyloplast sedimentation in root tips.We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways.Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination,increased ABA level,changes in ABA-associated genes in roots,and decreased drought tolerance in the seedlings.These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism,but also functions in ABA signaling to affect seed germination and root development,probably by mediating crosstalk between auxin and ABA pathways. 展开更多
关键词 Auxin transporter Root development Wavy root GRAVITROPISM Abscisic acid(ABA) Drought tolerance
下载PDF
Arabidopsis Phytochrome D Is Involved in Red Light-Induced Negative Gravitropism of Hypocotyles 被引量:1
13
作者 LI Jian-ping HOU Pei +3 位作者 ZHENG Xu SONG Mei-fang SU Liang YANG Jian-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1634-1639,共6页
The phytochrome gene family, which is in Arabidopsis thaliana, consists of phytochromes A-E(phyA to phyE), regulates plant responses to ambient light environments. PhyA and phyB have been characterized in detail, bu... The phytochrome gene family, which is in Arabidopsis thaliana, consists of phytochromes A-E(phyA to phyE), regulates plant responses to ambient light environments. PhyA and phyB have been characterized in detail, but studies on phyC to phyE have reported discrepant functions. In this study, we show that phyD regulates the Arabidopsis gravitropic response by inhibiting negative gravitropism of hypocotyls under red light condition. PhyD had only a limited effect on the gravitropic response of roots in red light condition. PhyD also enhanced phyB-regulated gravitropic responses in hypocotyls. Moreover, the regulation of hypocotyl gravitropic responses by phyD was dependent upon the red light fluence rate. 展开更多
关键词 phytochrome D GRAVITROPISM Arabidopsis thaliana
下载PDF
Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism
14
作者 Xiaolian Wang Yanfang Yuan +4 位作者 Laurence Charrier Zhaoguo Deng Markus Geisler Xing Wang Deng Haodong Chen 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第9期1886-1897,共12页
Light and gravity coordinately regulate the directional growth of plants.Arabidopsis Gravitropic in the Light 1(GIL1)inhibits the negative gravitropism of hypocotyls in red and far-red light,but the underlying molecul... Light and gravity coordinately regulate the directional growth of plants.Arabidopsis Gravitropic in the Light 1(GIL1)inhibits the negative gravitropism of hypocotyls in red and far-red light,but the underlying molecular mechanisms remain elusive.Our study found that GIL1 is a plasma membrane-localized protein.In endodermal cells of the upper part of hypocotyls,GIL1 controls the negative gravitropism of hypocotyls.GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3.Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant.The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light.Together,our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3,thereby enhancing the emergence of young seedlings from the soil. 展开更多
关键词 GIL1 GRAVITROPISM HYPOCOTYLS LIGHT PIN3
原文传递
LAZY4 acts additively with the starch-statolithdependent gravity-sensing pathway to regulate shoot gravitropism and tiller angle in rice
15
作者 Wenguang Wang Linzhou Huang +11 位作者 Yuqi Song Songtao Gui Jiajia Cao Han Zhang Mengchen Du Jiaze Chen Zihao Wang Jie Zhou Xiangbing Meng Dali Zeng Jiayang Li Yonghong Wang 《Plant Communications》 SCIE CSCD 2024年第10期154-165,共12页
Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population.However,the molecular mechanism underlying the control of rice tiller angle remains to be cl... Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population.However,the molecular mechanism underlying the control of rice tiller angle remains to be clarified.Here,we characterized the novel tiller-angle gene LAZY4(LA4)in rice through map-based cloning.LA4 encodes a C3H2C3-type RING zinc-finger E3 ligase localized in the nucleus,and an in vitro ubiquitination assay revealed that the conserved RING finger domain is essential for its E3 ligase activity.We found that expression of LA4 can be induced by gravistimulation and that loss of LA4 function leads to defective shoot gravitropism caused by impaired asymmetric auxin redistribution upon gravistimulation.Genetic analysis demonstrated that LA4 acts in a distinct pathway from the starch biosynthesis regulators LA2 and LA3,which function in the starch-statolith-dependent pathway.Further genetic analysis showed that LA4 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport upon gravistimulation.Our studies reveal that LA4 regulates shoot gravitropism and tiller angle upstream of LA1 through a novel pathway independent of the LA2-LA3-mediated gravity-sensing mechanism,providing new insights into the rice tiller-angle regulatory network. 展开更多
关键词 AUXIN shoot gravitropism tiller angle LAZY4 RICE
原文传递
Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism
16
作者 Ershang Han Zhenxing Geng +2 位作者 Yue Qin Yuewei Wang Shisong Ma 《Plant Communications》 SCIE CSCD 2024年第8期32-49,共18页
Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated,but related comprehensive gene co-expression network analyses are lacking.We conducted a single-cell gene co-expression network analysis wit... Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated,but related comprehensive gene co-expression network analyses are lacking.We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm.The analysis identified 149 gene co-expression modules,which we considered to be gene expression programs(GEPs).By examining their spatiotemporal expression,we identified GEPs specifically expressed in major root cell types along their developmental trajectories.These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators.As examples,a GEP specific for the quiescent center(QC)contains 20 genes regulating QC and stem cell niche homeostasis,and four GEPs are expressed in sieve elements(SEs)from early to late developmental stages,with the early-stage GEP containing 17 known SE developmental regulators.We also identified GEPs for metabolic pathways with cell-type-specific expression,suggesting the existence of cell-type-specific metabolism in roots.Using the GEPs,we discovered and verified a columellaspecific gene,NRL27,as a regulator of the auxin-related root gravitropism response.Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies. 展开更多
关键词 single-cell RNA sequencing single-cell gene co-expression network analysis gene expression program Arabidopsis root development NRL27 GRAVITROPISM
原文传递
The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana 被引量:4
17
作者 Shiv Mani Dubey Soeun Han +6 位作者 Nathan Stutzman Michael J.Prigge Eva Medvecka Matthieu Pierre Platre Wolfgang Busch Matyas Fendrych Mark Estelle 《Molecular Plant》 SCIE CSCD 2023年第7期1120-1130,共11页
The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptionalpathway.Among members of the TIR1/AFB auxin receptor family,AFB1 has a primary role in this rapidresponse. However, the un... The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptionalpathway.Among members of the TIR1/AFB auxin receptor family,AFB1 has a primary role in this rapidresponse. However, the unique features that confer this specific function have not been identified.Here we show that the N-terminal region of AFB1, including the F-box domain and residues thatcontribute to auxin binding,is essential and sufficient for its specific role in the rapid response. Substitutionof the N-terminal region of AFB1 with that of TIR1 disrupts its distinct cytoplasm-enriched localizationand activity in rapid root growth inhibition by auxin. Importantly, the N-terminal region of AFB1 isindispensable for auxin-triggered calcium influx, which is a prerequisite for rapid root growth inhibition.Furthermore, AFB1 negatively regulates lateral root formation and transcription of auxin-induced genes,suggesting that it plays an inhibitory role in canonical auxin signaling. These results suggest that AFB1may buffer the transcriptional auxin response, whereas it regulates rapid changes in cell growth thatcontributeto rootgravitropism. 展开更多
关键词 GRAVITROPISM calcium auxin signaling ARABIDOPSIS lateral root
原文传递
Brassinosteroids Regulate Root Growth, Development, and Symbiosis 被引量:22
18
作者 Zhuoyun Wei Jia Li 《Molecular Plant》 SCIE CAS CSCD 2016年第1期86-100,共15页
Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR-deficient or signaling mutants show significantly shortened root phenotypes. But for a long time, it was thought that these p... Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR-deficient or signaling mutants show significantly shortened root phenotypes. But for a long time, it was thought that these phenotypes were solely caused by reduced root cell elongation in the mutants. Functions of BRs in regulating root development have been largely neglected. Recent detailed analyses, however, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed. 展开更多
关键词 BRASSINOSTEROIDS root meristem root hair lateral root development gravitropic response SYMBIOSIS
原文传递
Negative phototropism of rice root and its influencing factors 被引量:26
19
作者 王忠 顾蕴洁 +1 位作者 莫亿伟 钱善勤 《Science China(Life Sciences)》 SCIE CAS 2002年第5期485-496,共12页
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched ... Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25° to 60°. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root. (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side. (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root cap was divested, (iv) The growth increment and curvature of rice root were both influenced by light intensity. Within the range of 0-100 μmol·m-2·s-1, the increasing of light intensity resulted in the decreasing of the growth increment and the increasing of the curvature of rice root. (v) The growth increment and the curvature reached the maximum at 30℃ with the temperature treatment of 10-40℃. (vi) Blue-violet light could prominently induce the negative phototropism of rice root, while red light had no such effect. (vii) The auxin (IAA) in the solution, as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravi-tropism of rice root when the concentration of IAA increased. The response of negative phototropism of rice root disappeared when the concentration of IAA was above 10 mg·L-1. 展开更多
关键词 rice seminal root adventitious root NEGATIVE phototropism gravitropism.
原文传递
Seven Things We Think We Know about Auxin Transport 被引量:32
20
作者 Wendy Ann Peer Joshua J. Blakeslee +1 位作者 Haibing Yang Angus S. Murphy 《Molecular Plant》 SCIE CAS CSCD 2011年第3期487-504,共18页
Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate em- bryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past dec... Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate em- bryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past decade has been marked by dramatic progress in efforts to elucidate the complex mechanisms by which auxin transport regulates plant growth. As the understanding of auxin transport regulation has been increasingly elaborated, it has become clear that this process is involved in almost all plant growth and environmental responses in some way. However, we still lack information about some basic aspects of this fundamental regulatory mechanism. In this review, we present what we know (or what we think we know) and what we do not know about seven auxin-regulated processes. We discuss the role of auxin transport in gravitropism in primary and lateral roots, phototropism, shoot branching, leaf expansion, and venation. We also discuss the auxin reflux/fountain model at the root tip, flavonoid modulation of auxin transport processes, and outstanding aspects of post-translational regulation of auxin transporters. This discussion is not meant to be exhaustive, but highlights areas in which generally held assumptions require more substantive validation. 展开更多
关键词 Auxin transport ABCB AUX1 PIN PHOTOTROPISM GRAVITROPISM fountain model shoot branching leaf expansion VENATION flavonoids.
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部