Grooving corrosion is a major form of corrosion and is prone to occur when high-frequency electric resistance welded (HFW) pipes are being used. Therefore,grooving corrosion is one of the performance indexes of HFW ...Grooving corrosion is a major form of corrosion and is prone to occur when high-frequency electric resistance welded (HFW) pipes are being used. Therefore,grooving corrosion is one of the performance indexes of HFW products. Grooving corrosion usually occurs along the welding fusion line, resulting in one or more corrosion grooves. The main factors affecting grooving corrosion include the contents of alloying elements and impurities (especially sulphur) in the steel,the microstructure of the welds and the steel substrate, welding parameters and the service environment as well. In this study, the existing methods for assessing grooving corrosion were systematically reviewed, improvements and new methods were proposed and developed to overcome the shortcomings of the existing methods, such as inaccuracy and excessive research time. By comparison with the existing methods, the operational procedures and the characteristics of the new methods are introduced, and issues regarding the behavior of grooving corrosion and their assessment methods, which both need further research,are discussed in this study.展开更多
Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this...Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this important effect,and to discuss the relationship between cutting parameters and pressurerelief effect,this paper carried out a numerical simulation of grooving along bottom slab and two sides of gateway with finite difference software FLAC^(2D).The results show that the control effect on floor heave in soft rock tunnel can be improved by selecting appropriate cutting parameters.Appropriately increasing the crevice depth in the middle of the floor can improve the stress state of bottom slab by stress transfer. So the floor heave can be more effectively controlled.To lengthen the crevice in the corners of roadway can simultaneously transfer the maximum stresses of bottom slab and two sides to deep rock,and promote the pressure-relief effect.Extending the crevice length and crevice width on both sides within a certain range can decrease the stress concentration in the corners of roadway,and reduce the deformation of two sides.The cutting position beneficial to restrain the floor heave is close to the bottom slab.展开更多
Although it is usually latent on citrus, apple, and pear, apple stem grooving virus(ASGV) poses a great risk to many sensitive cultivars. Since severe leaf yellow mottle mosaic(LYMM) symptoms have been observed on Hua...Although it is usually latent on citrus, apple, and pear, apple stem grooving virus(ASGV) poses a great risk to many sensitive cultivars. Since severe leaf yellow mottle mosaic(LYMM) symptoms have been observed on Huangjinmiyou(HJY) pummelos(Citrus grandis cv. Huangjinmiyou), a commercial variety that is widely cultivated in South China, high throughput sequencing(HTS) was used to find potential pathogens and only three divergent ASGV variants were identified. The three ASGV variants shared 81.03–82.34% genome-wide pairwise identities with each other, and were separately closest to other ASGV variants from different hosts and/or geographical regions, as indicated by viral phylogenies. However, these new variants may have developed from viral interstrain interactions, based on the results of recombination analysis. A large-scale survey using reverse transcription-PCR(RT-PCR) protocols designed for the three ASGV variants revealed a high incidence(92.7–100%) of ASGV in symptomatic HJY trees from 11 major citrusproducing regions in China. None of ASGV were detected in asymptomatic trees. Temperature treatments applied to the symptomatic HJY plants showed that ASGV is sensitive to high temperatures(30–35°C), at which not only the plants recovered, but also the viruses were not detected by RT-PCR, while at low temperatures(20–24°C), both the symptoms and viruses remained detectable. These data show that ASGV is associated with the LYMM disease prevalent on HJY in China, and this is the significant basis especially of taking appropriate measures timely to manage the disease.展开更多
In order to investigate the CO2 corrosion behavior and the grooving corrosion susceptibility of electric resistance welded tubes of the Q125 grade, the high temperature and high pressure autoclave was employed to cond...In order to investigate the CO2 corrosion behavior and the grooving corrosion susceptibility of electric resistance welded tubes of the Q125 grade, the high temperature and high pressure autoclave was employed to conduct CO2 corrosion experiments for the welded joint. The mechanisms of grooving corrosion and the factors influencing grooving corrosion susceptibility were identified by electrochemical measurement, microstructure observation, residual stress examination, micro-region composition and orientation analysis. The CO2 corrosion results show that the corrosion resistance of the base material is the best, followed by heataffected zone and the welded seam is the worst. The grooving corrosion occurred in the welded seam, and the grooving corrosion susceptibility of welded seam is relativity high. The dominated reason for the grooving corrosion of the electric resistance welded joint is the notable inclusions consisting of MnS as the main content in the welded seam. The proportion of high-angle grain boundaries in the welding zone is higher than that of base metal and the heat affected zone, which plays an important role in the corrosion behavior of the welded seam.展开更多
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte...Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.展开更多
It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this s...It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.展开更多
Traditional descriptions of liver anatomy refer to a smooth,convex surface contacting the diaphragm.Surface depressions are recognized anatomic variants.There are many theories to explain the cause of the depressions....Traditional descriptions of liver anatomy refer to a smooth,convex surface contacting the diaphragm.Surface depressions are recognized anatomic variants.There are many theories to explain the cause of the depressions.We discuss the theory that these are caused by hypertrophic muscular bands in the diaphragm.展开更多
The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using ...The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using the fourth-order Runge-Kutta method to obtain the vibration characteristics including displacement,velocity,acceleration,and frequency of the bearing.Validation of the model is accomplished through comparison with theoretical vibration frequencies.The influence of the amplitude of waviness of the inner and outer ring raceway surfaces of deep groove ball bearings on the vibration displacement,peak-to-peak vibration displacement and root-mean-square vibration acceleration is analyzed,and the results show that as the amplitude of the inner and outer ring raceway surfaces waviness increases,all the vibration characteristic indexes increase,indicating that the vibration amplitude of the bearings as well as the energy of the waviness-induced shock waveforms increase with the increase of the amplitude of the waviness.展开更多
Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Su...Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.展开更多
Hydrogen separation through oxygen transport membranes(OTMs)has attracted much attention.Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performa...Hydrogen separation through oxygen transport membranes(OTMs)has attracted much attention.Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performances.However,the resistance in the porous support layer(PSL)limits the overall separation performance significantly.Engineering the structure of the PSL is an appropriate way to enable fast gas transport and increase the separation performance.There is no relevant research on studying the influence of the PSL on hydrogen separation performance so far.Herein,we prepared Ce0.85Sm0.15O1.925–Sm0.6Sr0.4Cr0.3Fe0.7O3-δ(SDC-SSCF)asymmetric membranes with straight grooves in PSL by tape-casting and laser grooving.A~30%improvement in the hydrogen separation rate was achieved by grooving in the PSLs.It indicates that the grooves may reduce the concentration polarization resistance in PSL for the hydrogen separation process.This work provides a straight evidence on optimizing the structures of PSL for improving the hydrogen separation performance of the membrane reactors.展开更多
BACKGROUND Groove pancreatitis(GP)is a rare condition affecting the pancreatic groove region within the dorsal-cranial part of the pancreatic head,duodenum,and common bile duct.As a rare form of chronic pancreatitis,G...BACKGROUND Groove pancreatitis(GP)is a rare condition affecting the pancreatic groove region within the dorsal-cranial part of the pancreatic head,duodenum,and common bile duct.As a rare form of chronic pancreatitis,GP poses a diagnostic and therapeutic challenge for clinicians.GP is frequently misdiagnosed or not considered;thus,the diagnosis is often delayed by weeks or months.The treatment of GP is complicated and often requires surgical intervention,especially pancreatoduodenectomy.CASE SUMMARY A 66-year-old man with a history of long-term drinking was admitted to the gastroenterology department of our hospital,complaining of vomiting and acid reflux.Upper gastrointestinal endoscopy showed luminal stenosis in the descending part of the duodenum.Abdominal computed tomography showed slight exudation in the descending and horizontal parts of the duodenum with broadening of the groove region,indicating local pancreatitis.The symptoms of intestinal obstruction were not relieved with conservative therapy,and insertion of an enteral feeding tube was not successful.Exploratory laparoscopy was performed and revealed a hard mass with scarring in the horizontal part of the duodenum and stenosis.Intraoperative frozen section analysis showed no evidence of malignancy,and side-to-side duodenojejunostomy was performed.Routine pathologic examination showed massive proliferation of fibrous tissue,hyaline change,and the proliferation of spindle cells.Based on the radiologic and pathologic characteristics,a diagnosis of GP was made.The patient presented with anastomotic obstruction postoperatively and took a long time to recover,requiring supportive therapy.CONCLUSION GP often involves the descending and horizontal parts of the duodenum and causes duodenal stenosis,impaired duodenal motility,and gastric emptying due to fibrosis.展开更多
The propagation characteristics of the amplitude of the blasting seismic wave under the conditions of various topographies are approached by means of experiments. Some factors affecting the effects of quake insulation...The propagation characteristics of the amplitude of the blasting seismic wave under the conditions of various topographies are approached by means of experiments. Some factors affecting the effects of quake insulation groove, such as the size, the depth and the position of the quake insulation groove, are studied. The amplitudes of the blasting seismic waves under the conditions of the different sizes of the quake insulation groove are measured. According to the experiments, the effects of the quake insulation groove are related to the position, the distance, the energy of the explosion source and the size of the quake insulation groove itself. The farther it is from the explosion source, the smaller the energy is. The lower its position is and the larger its size is, the more remarkable the effects of the quake insulation groove are.展开更多
A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging...A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.展开更多
A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabric...A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabrication processes are fully compatible with conventional CMOS process,including salicide technology.The CMOS device,inverter,and CMOS ring oscillator of this structure with normal poly silicon and W/TiN gate electrode are fabricated respectively.Driving current and sub threshold characteristics of CMOS FinFET on Si substrate with actual gate length of 110nm are studied.The inverter operates correctly and minimum per stage delay of 201 stage ring oscillator is 146ps at V d=3V.The result indicates the device is a promising candidate for the application of future VLSI circuit.展开更多
Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multipl...Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.展开更多
文摘Grooving corrosion is a major form of corrosion and is prone to occur when high-frequency electric resistance welded (HFW) pipes are being used. Therefore,grooving corrosion is one of the performance indexes of HFW products. Grooving corrosion usually occurs along the welding fusion line, resulting in one or more corrosion grooves. The main factors affecting grooving corrosion include the contents of alloying elements and impurities (especially sulphur) in the steel,the microstructure of the welds and the steel substrate, welding parameters and the service environment as well. In this study, the existing methods for assessing grooving corrosion were systematically reviewed, improvements and new methods were proposed and developed to overcome the shortcomings of the existing methods, such as inaccuracy and excessive research time. By comparison with the existing methods, the operational procedures and the characteristics of the new methods are introduced, and issues regarding the behavior of grooving corrosion and their assessment methods, which both need further research,are discussed in this study.
文摘Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this important effect,and to discuss the relationship between cutting parameters and pressurerelief effect,this paper carried out a numerical simulation of grooving along bottom slab and two sides of gateway with finite difference software FLAC^(2D).The results show that the control effect on floor heave in soft rock tunnel can be improved by selecting appropriate cutting parameters.Appropriately increasing the crevice depth in the middle of the floor can improve the stress state of bottom slab by stress transfer. So the floor heave can be more effectively controlled.To lengthen the crevice in the corners of roadway can simultaneously transfer the maximum stresses of bottom slab and two sides to deep rock,and promote the pressure-relief effect.Extending the crevice length and crevice width on both sides within a certain range can decrease the stress concentration in the corners of roadway,and reduce the deformation of two sides.The cutting position beneficial to restrain the floor heave is close to the bottom slab.
基金supported by the National Key R&D Program of China(2019YFD1001800)the National Natural Science Foundation of China(32072389)+1 种基金the Innovation Program for Chongqing’s Overseas Returnees(cx2019013)111 Project(B18044)from Ministry of Education(China)。
文摘Although it is usually latent on citrus, apple, and pear, apple stem grooving virus(ASGV) poses a great risk to many sensitive cultivars. Since severe leaf yellow mottle mosaic(LYMM) symptoms have been observed on Huangjinmiyou(HJY) pummelos(Citrus grandis cv. Huangjinmiyou), a commercial variety that is widely cultivated in South China, high throughput sequencing(HTS) was used to find potential pathogens and only three divergent ASGV variants were identified. The three ASGV variants shared 81.03–82.34% genome-wide pairwise identities with each other, and were separately closest to other ASGV variants from different hosts and/or geographical regions, as indicated by viral phylogenies. However, these new variants may have developed from viral interstrain interactions, based on the results of recombination analysis. A large-scale survey using reverse transcription-PCR(RT-PCR) protocols designed for the three ASGV variants revealed a high incidence(92.7–100%) of ASGV in symptomatic HJY trees from 11 major citrusproducing regions in China. None of ASGV were detected in asymptomatic trees. Temperature treatments applied to the symptomatic HJY plants showed that ASGV is sensitive to high temperatures(30–35°C), at which not only the plants recovered, but also the viruses were not detected by RT-PCR, while at low temperatures(20–24°C), both the symptoms and viruses remained detectable. These data show that ASGV is associated with the LYMM disease prevalent on HJY in China, and this is the significant basis especially of taking appropriate measures timely to manage the disease.
文摘In order to investigate the CO2 corrosion behavior and the grooving corrosion susceptibility of electric resistance welded tubes of the Q125 grade, the high temperature and high pressure autoclave was employed to conduct CO2 corrosion experiments for the welded joint. The mechanisms of grooving corrosion and the factors influencing grooving corrosion susceptibility were identified by electrochemical measurement, microstructure observation, residual stress examination, micro-region composition and orientation analysis. The CO2 corrosion results show that the corrosion resistance of the base material is the best, followed by heataffected zone and the welded seam is the worst. The grooving corrosion occurred in the welded seam, and the grooving corrosion susceptibility of welded seam is relativity high. The dominated reason for the grooving corrosion of the electric resistance welded joint is the notable inclusions consisting of MnS as the main content in the welded seam. The proportion of high-angle grain boundaries in the welding zone is higher than that of base metal and the heat affected zone, which plays an important role in the corrosion behavior of the welded seam.
文摘Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.
基金Project supported by the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012335)the National Natural Science Foundation of China (Grant No.11274400)+2 种基金Pearl River S&T Nova Program of Guangzhou (Grant No.201506010059)State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University)。
文摘It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.
文摘Traditional descriptions of liver anatomy refer to a smooth,convex surface contacting the diaphragm.Surface depressions are recognized anatomic variants.There are many theories to explain the cause of the depressions.We discuss the theory that these are caused by hypertrophic muscular bands in the diaphragm.
文摘The dynamics model of a 2-degree-of-freedom deep groove ball bearing is established by incorporating the raceway surface waviness model comprising multiple sinusoidal functions superposition.The model is solved using the fourth-order Runge-Kutta method to obtain the vibration characteristics including displacement,velocity,acceleration,and frequency of the bearing.Validation of the model is accomplished through comparison with theoretical vibration frequencies.The influence of the amplitude of waviness of the inner and outer ring raceway surfaces of deep groove ball bearings on the vibration displacement,peak-to-peak vibration displacement and root-mean-square vibration acceleration is analyzed,and the results show that as the amplitude of the inner and outer ring raceway surfaces waviness increases,all the vibration characteristic indexes increase,indicating that the vibration amplitude of the bearings as well as the energy of the waviness-induced shock waveforms increase with the increase of the amplitude of the waviness.
文摘Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.
基金the National Natural Science Foundation of China(22008231 and 21776267)grants of Dalian National Laboratory for Clean Energy(DNL)(DNL180203)+1 种基金the LiaoNing Revitalization Talents Program(XLYC1801004)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y201829).
文摘Hydrogen separation through oxygen transport membranes(OTMs)has attracted much attention.Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performances.However,the resistance in the porous support layer(PSL)limits the overall separation performance significantly.Engineering the structure of the PSL is an appropriate way to enable fast gas transport and increase the separation performance.There is no relevant research on studying the influence of the PSL on hydrogen separation performance so far.Herein,we prepared Ce0.85Sm0.15O1.925–Sm0.6Sr0.4Cr0.3Fe0.7O3-δ(SDC-SSCF)asymmetric membranes with straight grooves in PSL by tape-casting and laser grooving.A~30%improvement in the hydrogen separation rate was achieved by grooving in the PSLs.It indicates that the grooves may reduce the concentration polarization resistance in PSL for the hydrogen separation process.This work provides a straight evidence on optimizing the structures of PSL for improving the hydrogen separation performance of the membrane reactors.
基金Supported by National Natural Science Foundation of China,No.82100568.
文摘BACKGROUND Groove pancreatitis(GP)is a rare condition affecting the pancreatic groove region within the dorsal-cranial part of the pancreatic head,duodenum,and common bile duct.As a rare form of chronic pancreatitis,GP poses a diagnostic and therapeutic challenge for clinicians.GP is frequently misdiagnosed or not considered;thus,the diagnosis is often delayed by weeks or months.The treatment of GP is complicated and often requires surgical intervention,especially pancreatoduodenectomy.CASE SUMMARY A 66-year-old man with a history of long-term drinking was admitted to the gastroenterology department of our hospital,complaining of vomiting and acid reflux.Upper gastrointestinal endoscopy showed luminal stenosis in the descending part of the duodenum.Abdominal computed tomography showed slight exudation in the descending and horizontal parts of the duodenum with broadening of the groove region,indicating local pancreatitis.The symptoms of intestinal obstruction were not relieved with conservative therapy,and insertion of an enteral feeding tube was not successful.Exploratory laparoscopy was performed and revealed a hard mass with scarring in the horizontal part of the duodenum and stenosis.Intraoperative frozen section analysis showed no evidence of malignancy,and side-to-side duodenojejunostomy was performed.Routine pathologic examination showed massive proliferation of fibrous tissue,hyaline change,and the proliferation of spindle cells.Based on the radiologic and pathologic characteristics,a diagnosis of GP was made.The patient presented with anastomotic obstruction postoperatively and took a long time to recover,requiring supportive therapy.CONCLUSION GP often involves the descending and horizontal parts of the duodenum and causes duodenal stenosis,impaired duodenal motility,and gastric emptying due to fibrosis.
文摘The propagation characteristics of the amplitude of the blasting seismic wave under the conditions of various topographies are approached by means of experiments. Some factors affecting the effects of quake insulation groove, such as the size, the depth and the position of the quake insulation groove, are studied. The amplitudes of the blasting seismic waves under the conditions of the different sizes of the quake insulation groove are measured. According to the experiments, the effects of the quake insulation groove are related to the position, the distance, the energy of the explosion source and the size of the quake insulation groove itself. The farther it is from the explosion source, the smaller the energy is. The lower its position is and the larger its size is, the more remarkable the effects of the quake insulation groove are.
基金Project (U0834002) supported by the Key Program of NSFC Guangdong Joint Funds of ChinaProjects (51005079, 20976055) supported by the National Natural Science Foundation of China+1 种基金Project (10451064101005146) supported by the Natural Science Foundation of Guangdong Province, ChinaProject (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.
文摘A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabrication processes are fully compatible with conventional CMOS process,including salicide technology.The CMOS device,inverter,and CMOS ring oscillator of this structure with normal poly silicon and W/TiN gate electrode are fabricated respectively.Driving current and sub threshold characteristics of CMOS FinFET on Si substrate with actual gate length of 110nm are studied.The inverter operates correctly and minimum per stage delay of 201 stage ring oscillator is 146ps at V d=3V.The result indicates the device is a promising candidate for the application of future VLSI circuit.
文摘Mode matching method is used to analyze the scattering characteristics of thecircular-to-circular groove waveguide junction. Matching the electric fields and magnetic fields atthe boundary of the junction, and multiplying the mode functions of the circular waveguide andcircular groove waveguide on both sides of the boundary equation, the scattering matrix equation isobtained, the scattering coefficients can be obtained from the equation. Then the scatteringcharacteristics of the iris with circular window in circular groove waveguide are analyzed. At lastthe convergent problem is discussed; when choosing a suitable mode group, convergent numericalresults are obtained, and the frequency response of the iris' scattering coefficients is also given.
基金financially supported by Natural Science Foundation of Guangdong Province,China(No.S2013040013066)the 2014 annual university outstanding young teachers training plan of Guangdong Province