In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/...In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.展开更多
In this paper,we investigate a class of nonlinear Chern-Simons-Schr?dinger systems with a steep well potential.By using variational methods,the mountain pass theorem and Nehari manifold methods,we prove the existence ...In this paper,we investigate a class of nonlinear Chern-Simons-Schr?dinger systems with a steep well potential.By using variational methods,the mountain pass theorem and Nehari manifold methods,we prove the existence of a ground state solution forλ>0 large enough.Furthermore,we verify the asymptotic behavior of ground state solutions asλ→+∞.展开更多
This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solution...This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.展开更多
We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical ...We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical Sobolev exponent in 1R3.Under some more general assumptions on f,we prove that(0.1)admits a nontrivial ground state solution by using a constrained minimization on a Nehari-Pohozaev manifold.展开更多
We consider the Schrodinger-Poisson system with nonlinear term Q(x)|u|^p-1u,where the value of |x|→∞ lim Q(x)may not exist and Q may change sign.This means that the problem may have no limit problem.The existence of...We consider the Schrodinger-Poisson system with nonlinear term Q(x)|u|^p-1u,where the value of |x|→∞ lim Q(x)may not exist and Q may change sign.This means that the problem may have no limit problem.The existence of nonnegative ground state solutions is established.Our method relies upon the variational method and some analysis tricks.展开更多
We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under som...We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.展开更多
In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a posit...In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.展开更多
In this paper,we consider the Chern-Simons-Schrodinger system{−Δu+[e^(2)|A|^(2)+(V(x)+2eA_(0))+2(1+κq/2)N]u+q|u|^(p−2)u=0,−ΔN+κ^(2)q^(2)N+q(1+κq2)u^(2)=0,κ(∂_(1)A_(2)−∂_(2)A_(1))=−eu^(2),∂_(1)A_(1)+∂_(2)A_(2)=0,...In this paper,we consider the Chern-Simons-Schrodinger system{−Δu+[e^(2)|A|^(2)+(V(x)+2eA_(0))+2(1+κq/2)N]u+q|u|^(p−2)u=0,−ΔN+κ^(2)q^(2)N+q(1+κq2)u^(2)=0,κ(∂_(1)A_(2)−∂_(2)A_(1))=−eu^(2),∂_(1)A_(1)+∂_(2)A_(2)=0,κ∂_(1)A_(0)=e^(2)A_(2)u^(2),κ∂_(2)A_(0)=−e^(2)A_(1)u^(2),where u∈H^(1)(R^(2)),p∈(2,4),Aα:R^(2)→R are the components of the gauge potential(α=0,1,2),N:R^(2)→R is a neutral scalar field,V(x)is a potential function,the parametersκ,q>0 represent the Chern-Simons coupling constant and the Maxwell coupling constant,respectively,and e>0 is the coupling constant.In this paper,the truncation function is used to deal with a neutral scalar field and a gauge field in the Chern-Simons-Schrödinger problem.The ground state solution of the problem(P)is obtained by using the variational method.展开更多
This paper deals with a class of Schr¨odinger-Poisson systems. Under some conditions, we prove that there exists a ground state solution of the system. The proof is based on the compactness lemma for the system. ...This paper deals with a class of Schr¨odinger-Poisson systems. Under some conditions, we prove that there exists a ground state solution of the system. The proof is based on the compactness lemma for the system. Our results here improve some existing results in the literature.展开更多
This paper mainly discusses the following equation: where the potential function V : R<sup>3</sup> → R, α ∈ (0,3), λ > 0 is a parameter and I<sub>α</sub> is the Riesz potential. We stud...This paper mainly discusses the following equation: where the potential function V : R<sup>3</sup> → R, α ∈ (0,3), λ > 0 is a parameter and I<sub>α</sub> is the Riesz potential. We study a class of Schrödinger-Poisson system with convolution term for upper critical exponent. By using some new tricks and Nehair-Pohožave manifold which is presented to overcome the difficulties due to the presence of upper critical exponential convolution term, we prove that the above problem admits a ground state solution.展开更多
In this paper, we study the following Schrödinger-Kirchhoff equation where V(x) ≥ 0 and vanishes on an open set of R<sup>2</sup> and f has critical exponential growth. By using a version of Trudinger...In this paper, we study the following Schrödinger-Kirchhoff equation where V(x) ≥ 0 and vanishes on an open set of R<sup>2</sup> and f has critical exponential growth. By using a version of Trudinger-Moser inequality and variational methods, we obtain the existence of ground state solutions for this problem.展开更多
In this paper,the authors consider the following singular Kirchhoff-Schrodinger problem M(∫_(R^(N))|∇u|^(N)+V(x)|u|^(N)dx)(−Δ_(N)u+V(x)|u|^(N-2)u)=f(x,u)/|x|^(η)in R^(N),(P_(η))where 0<η<N,M is a Kirchhoff-...In this paper,the authors consider the following singular Kirchhoff-Schrodinger problem M(∫_(R^(N))|∇u|^(N)+V(x)|u|^(N)dx)(−Δ_(N)u+V(x)|u|^(N-2)u)=f(x,u)/|x|^(η)in R^(N),(P_(η))where 0<η<N,M is a Kirchhoff-type function and V(x)is a continuous function with positive lower bound,f(x,t)has a critical exponential growth behavior at infinity.Combining variational techniques with some estimates,they get the existence of ground state solution for(P_(η)).Moreover,they also get the same result without the A-R condition.展开更多
We study the Schrodinger-KdV system{-△u+λ1(x)u=u^3+βuv,u∈H^1(R^N),-△v+λ2(x)v=1/2v^2+β/2u^2,v∈H^1(R^N),where N=1,2,3,λi(x)∈C(R^N,R),lim|x|→∞λi(x)=λi(∞),and λi(x)≤λi(∞),i=1,2,a.e.x∈R^N.We obtain the ...We study the Schrodinger-KdV system{-△u+λ1(x)u=u^3+βuv,u∈H^1(R^N),-△v+λ2(x)v=1/2v^2+β/2u^2,v∈H^1(R^N),where N=1,2,3,λi(x)∈C(R^N,R),lim|x|→∞λi(x)=λi(∞),and λi(x)≤λi(∞),i=1,2,a.e.x∈R^N.We obtain the existence of nontrivial ground state solutions for the above system by variational methods and the Nehari manifold.展开更多
We consider the following quasilinear Schrodinger equation involving p-Laplacian-Δpu+V(x)|u|^(p-2)u-Δp(|u|^(2η))|u|^(2η-2)u=λ|u|^(q-2)u/|x|^(μ)+|u|^(2ηp*(v)-2)u/|x|^(v)in R^(N),where N>p>1,η≥p/2(p-1),p&...We consider the following quasilinear Schrodinger equation involving p-Laplacian-Δpu+V(x)|u|^(p-2)u-Δp(|u|^(2η))|u|^(2η-2)u=λ|u|^(q-2)u/|x|^(μ)+|u|^(2ηp*(v)-2)u/|x|^(v)in R^(N),where N>p>1,η≥p/2(p-1),p<q<2ηp^(*)(μ),p^(*)(s)=(p(N-s))/N-p,andλ,μ,νare parameters withλ>0,μ,ν∈[0,p).Via the Mountain Pass Theorem and the Concentration Compactness Principle,we establish the existence of nontrivial ground state solutions for the above problem.展开更多
In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^...In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^(∗)=2N/(N−2)are critical with respect to the Hardy-Littlewood-Sobolev inequality and Sobolev embedding,respectively.Based on the variational methods,by using the minimax principles and the Pohožaev manifold method,we prove the existence of ground state solution under some suitable assumptions on the perturbation f.展开更多
In this paper,we study the following N-coupled nonlinear Schrodinger system■,wheren≤3,N≥3,uj>0,βi,j=βj,i>0 are constants andβj,j=μj,j=1,...,N.There have been intensive studies for the system on existence/...In this paper,we study the following N-coupled nonlinear Schrodinger system■,wheren≤3,N≥3,uj>0,βi,j=βj,i>0 are constants andβj,j=μj,j=1,...,N.There have been intensive studies for the system on existence/non-existence and clas-sification of ground state solutions when N=2.However fewer results about the classification of ground state solution are available for N≥3.In this paper,we first give a complete classification result on ground state solutions with Morse indices 1,2 or 3 for three-coupled Schrodinger system.Then we generalize our results to N-coupled Schrodinger system for ground state solutions with Morse indices 1 and N.We show that any positive ground state solutions with Morse index 1 or Morse index N must be the form of(d1w,d2w,...,dNw)under suitable conditions,where w is the unique positive ground state solution of certain equation.Finally,we generalize our results to fractional N-coupled Schrödinger system.展开更多
This paper is dedicated to studying the following elliptic system of Hamiltonian type:■where N≥3,V,Q∈C(RN,R),V(x)is allowed to be sign-changing and inf Q>0,and F∈C1(R2,R)is superquadratic at both 0 and infinity...This paper is dedicated to studying the following elliptic system of Hamiltonian type:■where N≥3,V,Q∈C(RN,R),V(x)is allowed to be sign-changing and inf Q>0,and F∈C1(R2,R)is superquadratic at both 0 and infinity but subcritical.Instead of the reduction approach used in Ding et al.(2014),we develop a more direct approach—non-Nehari manifold approach to obtain stronger conclusions but under weaker assumptions than those in Ding et al.(2014).We can find anε0>0 which is determined by terms of N,V,Q and F,and then we prove the existence of a ground state solution of Nehari-Pankov type to the coupled system for allε∈(0,ε0].展开更多
In this paper,we consider the nonlinear Kirchhoff type equation with a steep potential well−(a+b∫_(R)^(3)|∇u|^(2 )dx)Δu+λV(x)u=f(u)in R^(3),where a,b>0 are constants,λ is a positive parameter,V∈C(R3,R)is a ste...In this paper,we consider the nonlinear Kirchhoff type equation with a steep potential well−(a+b∫_(R)^(3)|∇u|^(2 )dx)Δu+λV(x)u=f(u)in R^(3),where a,b>0 are constants,λ is a positive parameter,V∈C(R3,R)is a steep potential well and the nonlinearity f∈C(R,R)satisfies certain assumptions.By applying a signchanging Nehari manifold combined with the method of constructing a sign-changing(PS)C sequence,we obtain the existence of ground state sign-changing solutions with precisely two nodal domains when λ is large enough,and find that its energy is strictly larger than twice that of the ground state solutions.In addition,we also prove the concentration of ground state sign-changing solutions.展开更多
In this paper,we study normalized solutions of the Chern-Simons-Schrödinger system with general nonlinearity and a potential in H^(1)(ℝ^(2)).When the nonlinearity satisfies some general 3-superlinear conditions,w...In this paper,we study normalized solutions of the Chern-Simons-Schrödinger system with general nonlinearity and a potential in H^(1)(ℝ^(2)).When the nonlinearity satisfies some general 3-superlinear conditions,we obtain the existence of ground state normalized solutions by using the minimax procedure proposed by Jeanjean in[L.Jeanjean,Existence of solutions with prescribed norm for semilinear elliptic equations,Nonlinear Anal.(1997)].展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)National Natural Science Foundation of China Youth Foud of China Youth Foud(Grant No.12101192).
文摘In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.
基金supported by National Natural Science Foundation of China(11971393)。
文摘In this paper,we investigate a class of nonlinear Chern-Simons-Schr?dinger systems with a steep well potential.By using variational methods,the mountain pass theorem and Nehari manifold methods,we prove the existence of a ground state solution forλ>0 large enough.Furthermore,we verify the asymptotic behavior of ground state solutions asλ→+∞.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate(CX2013A003)the NNSF(11171351,11361078)SRFDP(20120162110021)of China
文摘This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.
基金the Science and Technology Project of Education Department in Jiangxi Province(GJJ180357)the second author was supported by NSFC(11701178).
文摘We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical Sobolev exponent in 1R3.Under some more general assumptions on f,we prove that(0.1)admits a nontrivial ground state solution by using a constrained minimization on a Nehari-Pohozaev manifold.
基金National Natural Science Foundation of China(11471267)the first author was supported by Graduate Student Scientific Research Innovation Projects of Chongqing(CYS17084).
文摘We consider the Schrodinger-Poisson system with nonlinear term Q(x)|u|^p-1u,where the value of |x|→∞ lim Q(x)may not exist and Q may change sign.This means that the problem may have no limit problem.The existence of nonnegative ground state solutions is established.Our method relies upon the variational method and some analysis tricks.
基金supported by National Natural Science Foundation of China(11971202)Outstanding Young foundation of Jiangsu Province(BK20200042)。
文摘We study the Choquard equation-Δu+V(x)u-b(x)∫R3|u(y)|2/|x-y|dyu,x∈R3,where V(x)=V1(x),b(x)=b1(x)for x1>0 and V(x)=V2(x),b(x)=b2(x)for x1<0,and V1,V2,b1and b2are periodic in each coordinate direction.Under some suitable assumptions,we prove the existence of a ground state solution of the equation.Additionally,we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.
基金supported by the National Natural Science Foundation of China(11661053,11771198,11901345,11901276,11961045 and 11971485)partly by the Provincial Natural Science Foundation of Jiangxi,China(20161BAB201009 and 20181BAB201003)+1 种基金the Outstanding Youth Scientist Foundation Plan of Jiangxi(20171BCB23004)the Yunnan Local Colleges Applied Basic Research Projects(2017FH001-011).
文摘In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.
基金partially supported by NSFC (12161044)Natural Science Foundation of Jiangxi Province (20212BAB211013)+1 种基金Benniao Li was partially supported by NSFC (12101274)Doctoral Research Startup Foundation of Jiangxi Normal University (12020927)
文摘In this paper,we consider the Chern-Simons-Schrodinger system{−Δu+[e^(2)|A|^(2)+(V(x)+2eA_(0))+2(1+κq/2)N]u+q|u|^(p−2)u=0,−ΔN+κ^(2)q^(2)N+q(1+κq2)u^(2)=0,κ(∂_(1)A_(2)−∂_(2)A_(1))=−eu^(2),∂_(1)A_(1)+∂_(2)A_(2)=0,κ∂_(1)A_(0)=e^(2)A_(2)u^(2),κ∂_(2)A_(0)=−e^(2)A_(1)u^(2),where u∈H^(1)(R^(2)),p∈(2,4),Aα:R^(2)→R are the components of the gauge potential(α=0,1,2),N:R^(2)→R is a neutral scalar field,V(x)is a potential function,the parametersκ,q>0 represent the Chern-Simons coupling constant and the Maxwell coupling constant,respectively,and e>0 is the coupling constant.In this paper,the truncation function is used to deal with a neutral scalar field and a gauge field in the Chern-Simons-Schrödinger problem.The ground state solution of the problem(P)is obtained by using the variational method.
文摘This paper deals with a class of Schr¨odinger-Poisson systems. Under some conditions, we prove that there exists a ground state solution of the system. The proof is based on the compactness lemma for the system. Our results here improve some existing results in the literature.
文摘This paper mainly discusses the following equation: where the potential function V : R<sup>3</sup> → R, α ∈ (0,3), λ > 0 is a parameter and I<sub>α</sub> is the Riesz potential. We study a class of Schrödinger-Poisson system with convolution term for upper critical exponent. By using some new tricks and Nehair-Pohožave manifold which is presented to overcome the difficulties due to the presence of upper critical exponential convolution term, we prove that the above problem admits a ground state solution.
文摘In this paper, we study the following Schrödinger-Kirchhoff equation where V(x) ≥ 0 and vanishes on an open set of R<sup>2</sup> and f has critical exponential growth. By using a version of Trudinger-Moser inequality and variational methods, we obtain the existence of ground state solutions for this problem.
基金supported by the National Natural Science Foundation of China(Nos.11790271,12171108,12201089)Guangdong Basic and Applied basic Research Foundation(No.2020A1515011019)Innovation and Development Project of Guangzhou University and Chongqing Normal University Foundation(No.21XLB039)。
文摘In this paper,the authors consider the following singular Kirchhoff-Schrodinger problem M(∫_(R^(N))|∇u|^(N)+V(x)|u|^(N)dx)(−Δ_(N)u+V(x)|u|^(N-2)u)=f(x,u)/|x|^(η)in R^(N),(P_(η))where 0<η<N,M is a Kirchhoff-type function and V(x)is a continuous function with positive lower bound,f(x,t)has a critical exponential growth behavior at infinity.Combining variational techniques with some estimates,they get the existence of ground state solution for(P_(η)).Moreover,they also get the same result without the A-R condition.
基金supportedby the National Natural Science Foundation of China(Grant No.11971393).
文摘We study the Schrodinger-KdV system{-△u+λ1(x)u=u^3+βuv,u∈H^1(R^N),-△v+λ2(x)v=1/2v^2+β/2u^2,v∈H^1(R^N),where N=1,2,3,λi(x)∈C(R^N,R),lim|x|→∞λi(x)=λi(∞),and λi(x)≤λi(∞),i=1,2,a.e.x∈R^N.We obtain the existence of nontrivial ground state solutions for the above system by variational methods and the Nehari manifold.
基金supported by the National Natural Science Foundation of China (12226411)the Research Ability Cultivation Fund of HUAS (No.2020kypytd006)+1 种基金supported by the National Natural Science Foundation of China (11931012,11871386)the Fundamental Research Funds for the Central Universities (WUT:2020IB019)。
文摘We consider the following quasilinear Schrodinger equation involving p-Laplacian-Δpu+V(x)|u|^(p-2)u-Δp(|u|^(2η))|u|^(2η-2)u=λ|u|^(q-2)u/|x|^(μ)+|u|^(2ηp*(v)-2)u/|x|^(v)in R^(N),where N>p>1,η≥p/2(p-1),p<q<2ηp^(*)(μ),p^(*)(s)=(p(N-s))/N-p,andλ,μ,νare parameters withλ>0,μ,ν∈[0,p).Via the Mountain Pass Theorem and the Concentration Compactness Principle,we establish the existence of nontrivial ground state solutions for the above problem.
基金This paper is supported by the National Natural Science Foundation of China(No.11971393).
文摘In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^(∗)=2N/(N−2)are critical with respect to the Hardy-Littlewood-Sobolev inequality and Sobolev embedding,respectively.Based on the variational methods,by using the minimax principles and the Pohožaev manifold method,we prove the existence of ground state solution under some suitable assumptions on the perturbation f.
文摘In this paper,we study the following N-coupled nonlinear Schrodinger system■,wheren≤3,N≥3,uj>0,βi,j=βj,i>0 are constants andβj,j=μj,j=1,...,N.There have been intensive studies for the system on existence/non-existence and clas-sification of ground state solutions when N=2.However fewer results about the classification of ground state solution are available for N≥3.In this paper,we first give a complete classification result on ground state solutions with Morse indices 1,2 or 3 for three-coupled Schrodinger system.Then we generalize our results to N-coupled Schrodinger system for ground state solutions with Morse indices 1 and N.We show that any positive ground state solutions with Morse index 1 or Morse index N must be the form of(d1w,d2w,...,dNw)under suitable conditions,where w is the unique positive ground state solution of certain equation.Finally,we generalize our results to fractional N-coupled Schrödinger system.
基金supported by National Natural Science Foundation of China(Grant No.11171351)
文摘This paper is dedicated to studying the following elliptic system of Hamiltonian type:■where N≥3,V,Q∈C(RN,R),V(x)is allowed to be sign-changing and inf Q>0,and F∈C1(R2,R)is superquadratic at both 0 and infinity but subcritical.Instead of the reduction approach used in Ding et al.(2014),we develop a more direct approach—non-Nehari manifold approach to obtain stronger conclusions but under weaker assumptions than those in Ding et al.(2014).We can find anε0>0 which is determined by terms of N,V,Q and F,and then we prove the existence of a ground state solution of Nehari-Pankov type to the coupled system for allε∈(0,ε0].
基金the National Natural Science Foundation of China (11971393)。
文摘In this paper,we consider the nonlinear Kirchhoff type equation with a steep potential well−(a+b∫_(R)^(3)|∇u|^(2 )dx)Δu+λV(x)u=f(u)in R^(3),where a,b>0 are constants,λ is a positive parameter,V∈C(R3,R)is a steep potential well and the nonlinearity f∈C(R,R)satisfies certain assumptions.By applying a signchanging Nehari manifold combined with the method of constructing a sign-changing(PS)C sequence,we obtain the existence of ground state sign-changing solutions with precisely two nodal domains when λ is large enough,and find that its energy is strictly larger than twice that of the ground state solutions.In addition,we also prove the concentration of ground state sign-changing solutions.
基金Supported by the National Natural Science Foundation of China (11971393).
文摘In this paper,we study normalized solutions of the Chern-Simons-Schrödinger system with general nonlinearity and a potential in H^(1)(ℝ^(2)).When the nonlinearity satisfies some general 3-superlinear conditions,we obtain the existence of ground state normalized solutions by using the minimax procedure proposed by Jeanjean in[L.Jeanjean,Existence of solutions with prescribed norm for semilinear elliptic equations,Nonlinear Anal.(1997)].
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.