In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold pertu...We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.展开更多
In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the m...In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the mechanical resonator through standard optomechanical subsystem.The standard optomechanical subsystem is driven by a strong pump laser field.With the help of the auxiliary cavities,the heating process is suppressed and the cooling process of the mechanical resonator is enhanced.More importantly,the average phonon number is much less than 1 in a larger range.This means that the mechanical resonator can be cooled down to its ground state.All these interesting features will significantly promote the physical realization of quantum effects in multi-cavity optomechanical systems.展开更多
We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are perf...We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.展开更多
The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase tra...The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.展开更多
Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoicMometry of NB2 at ambient pressure, which belongs to the tetragonal 1...Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoicMometry of NB2 at ambient pressure, which belongs to the tetragonal 14m2 space group. Then, its structure, elastic properties, electronic structure, and chemical bonding are investigated by first-principles calculations with the density functional theory. The phonon calculation and elastic constants confirm that the predicted NB2 is dynamically and mechanically stable, respectively. The large bulk modulus, large shear modulus, large Young's modulus, and small Poisson's ratio show that the 14m2 NB2 should be a new superhard material with a calculated theoretical Vickers hardness value of 66 GPa. Further analysis on density of states and electron localization function demonstrate that the strong B B and 13 N covalent bonds are the main reason for its high hardness in 14m2 NB2.展开更多
Combining first-principles calculations with the particle swarm optimization (PSO) algorithm, we have explored the ground-state structure of Pd2N, whose structure is in debate although it is the first synthesized bi...Combining first-principles calculations with the particle swarm optimization (PSO) algorithm, we have explored the ground-state structure of Pd2N, whose structure is in debate although it is the first synthesized binary platinum group nitride. The ground-state structure is predicted to be tetragonal with space group P^-4m2, which is energetically more favorable than the previously proposed orthorhombic Co2N-type structure. The stability is confirmed by the subsequent calculations on the phonon dispersion curves and elastic constants. Furthermore, the calculated mechanical properties indicate that Pd2N has low incompressibility and is a common hard material.展开更多
The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained...The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.展开更多
The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Differe...The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra ek of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2 L (L is the length of a subchain) with the coefficient A ~ 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for 7 = 0 and 0 〈 h 〈 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest- neighbor concurrence and its derivative are like those for the anisotropy transition.展开更多
By means of improved ligand-field theory, the 'pure electronic'presure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of the R_1, R_2,B_1, B_2, B_3, and R′_3 lines and the...By means of improved ligand-field theory, the 'pure electronic'presure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of the R_1, R_2,B_1, B_2, B_3, and R′_3 lines and the ground-state zero-Geld-splitting of ruby have been uniformlycalculated. The calculation results are in very good agreement with all the experimental data. Atnormal pressure, ruby is a crystal with very strong crystal field. Thus, the admixture of ∣t_2~2(~3T_1)e~4T_2 】 and ∣t_2~(32)E> bases in the wavefunction of R_1 level of ruby is small at normalpressure, and it gradually decreases with increasing pressure, which causes the R_1-line PS of rubyto monotonously red shift with approximate linearity. The combined effect of the pure electronic PSof R_1 line and the PS of R_1 line due to EPI gives rise to the total PS of R_1 line. The analysesand comparisons among the features of R_1-line PS's of three laser crystals (ruby, GSGG:Cr~(3+) andGGG:Cr~(3+)) have been made, and the origin of their difference has been revealed.展开更多
We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net ...We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.展开更多
With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by sett...With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by setting "imaging product".A new high symmetry,supervalence isomer of Al5C cluster,i.e.,D5h-Al5C,at the local minimum in the MEPs is detected.Several parameters,such as binding energy,HOMO-LUMO energy gap,vertical electron detachment energy and electron affinity energy,are calculated to characterize and evaluate the stability of three Al5C configurations,i.e.,D5h-Al5C,Cs-Al5C and C1-Al5C.The results show that the D5h-Al5C cluster is the ground state structure instead of Cs-Al5C.Due to the formation of many central σ bonds after polymerizing for D5h-Al5C,the decrease of the energy for HOMO orbit results in more territory for HOMO electrons of dislocation effect,then the energy difference between HOMO and LUMO is increasing to enhance the stability of molecules to produce such supervalence structure of Al5C cluster.The configuration evolution between D5h-Al5C,Cs-Al5C and C1-Al5C and the synthesis preference in the mode of Al5 + C → Al5C reveals that the Cs-Al5C and C1-Al5C con-figurations are permissive to coexist with D5h-Al5C structure in energetics.展开更多
The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solut...The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which implements such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be obtained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.展开更多
A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical grou...A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical ground state.UGSB is used to implement a SWAP gate in one step without individual addressing of atoms.Aiming at circumventing common issues in RAB-based gates including atomic decay,Doppler dephasing,and fluctuations in the interatomic coupling strength,we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime.In addition,on the basis of the proposed SWAP gates,we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB.The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.展开更多
Cavity magnomechanics has recently become a new platform for studying macroscopic quantum phenomena.The magnetostriction induced vibration mode of a large-size ferromagnet or ferrimagnet reaching its ground state repr...Cavity magnomechanics has recently become a new platform for studying macroscopic quantum phenomena.The magnetostriction induced vibration mode of a large-size ferromagnet or ferrimagnet reaching its ground state represents a genuine macroscopic quantum state.Here we study the ground-state cooling of the mechanical vibration mode in a cavity magnomechanical system,and focus on the role of magnon squeezing in improving the cooling efficiency.The magnon squeezing is obtained by exploiting the magnon self-Kerr nonlinearity.We find that the magnon squeezing can significantly and even completely suppress the magnomechanical Stokes scattering.It thus becomes particularly useful in realizing ground-state cooling in the unresolved-sideband regime,where the conventional sideband cooling protocols become inefficient.We also find that the coupling to the microwave cavity plays only an adverse effect in mechanical cooling.This makes essentially the two-mode magnomechanical system(without involving the microwave cavity)a preferred system for cooling the mechanical motion,in which the magnon mode is established by a uniform bias magnetic field and a microwave drive field.展开更多
In this paper, we consider the ground-states of the following M-coupled system:where p_(ij)+q_(ij)=2*:=2 N/(N-2)(N≥3). We prove the existence of ground-states to the M-coupled system. At the same time, we not only gi...In this paper, we consider the ground-states of the following M-coupled system:where p_(ij)+q_(ij)=2*:=2 N/(N-2)(N≥3). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.展开更多
Recently Deng Conghao et al. proposed a new method for the direct solution of the many-body Schrdinger equation. Calculations based on this method for the ground-state energy of He indicated that the convergence of th...Recently Deng Conghao et al. proposed a new method for the direct solution of the many-body Schrdinger equation. Calculations based on this method for the ground-state energy of He indicated that the convergence of the hyperspherical harmonics (HH) expansion is slow and not satisfactory. A ground-state energy of-2.90328 a.u. was obtained in Ref.[2] with 361 HH and 4 GLF. In order to展开更多
Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones,have played significant roles in the fields of organic synthesis,pharmaceuticals,and agrochemicals.The selective oxidation of the parent sul...Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones,have played significant roles in the fields of organic synthesis,pharmaceuticals,and agrochemicals.The selective oxidation of the parent sulfides has been considered as one of the most straightforward methods for the construction of sulfoxides and sulfones.Therefore.展开更多
By coupling with a qubit, we demonstrate that qubit decoherence can unambiguously detect the occurrence of ground-state degeneracy in many-body systems. We first demonstrate universality using the two-band model. Cons...By coupling with a qubit, we demonstrate that qubit decoherence can unambiguously detect the occurrence of ground-state degeneracy in many-body systems. We first demonstrate universality using the two-band model. Consequently, several exemplifications, focused on topological condensed matter systems in one, two, and three dimensions, are presented to validate our proposal. The key point is that qubit decoherence varies significantly when energy bands touch each other at the Fermi surface. In addition, it can partially reflect the degeneracy inside the band. This feature implies that qubit decoherence can be used for reliable diagnosis of ground-state degeneracy.展开更多
We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical p...We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical potential, four types of the ground-state phases are discovered. The effects of the disorder, the on-site interaction and the long-range interaction on the quantum coherence are studied. For the system without the long-range interaction, the quantum coherence changes from one periodic oscillation to two periodic oscillations as the onsite interaction increases. By considering the long-range interaction, the quantum coherence goes back to one periodic oscillation again. The on-site interaction itself suppresses the quantum coherence, both the on-site interaction and long-range interaction together enhance the quantum coherence with the weak disorder. If the disorder strength is increased beyond a critical value,they start to suppress the quantum coherence. In a regular four-chain Bose–Hubbard model, i.e.,each chain has many optical potentials, the ground-state phase transitions are obtained by using the cluster Gutzwiller mean-field method. Exotic ground-state phases are found, i.e., superfluid phase, integer Mott insulator phase, supersolid phase and loophole insulator phase. The combination of the loophole insulator phase and the supersolid phase expands the lobes with the half-integer filling per site for the small ratio β = t_(‖)/t_(⊥).展开更多
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647071)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160435)
文摘We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.
基金Project supported by the Research Fund of Tonghua Normal University(Grant No.202017ND)。
文摘In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the mechanical resonator through standard optomechanical subsystem.The standard optomechanical subsystem is driven by a strong pump laser field.With the help of the auxiliary cavities,the heating process is suppressed and the cooling process of the mechanical resonator is enhanced.More importantly,the average phonon number is much less than 1 in a larger range.This means that the mechanical resonator can be cooled down to its ground state.All these interesting features will significantly promote the physical realization of quantum effects in multi-cavity optomechanical systems.
文摘We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.
基金Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700the National Science Fund for Distinguished Young Scholars under Grant No 11425523+4 种基金the National Natural Science Foundation of China under Grant Nos 11375167,11227901,91021005 and 11575173the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities
文摘The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
基金Supported by the Natural Science Foundation of Henan Educational Committee under Grant No 2011A140006the Key Scientific and Technological Project of He'nan Province under Grant No 152102210307
文摘Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoicMometry of NB2 at ambient pressure, which belongs to the tetragonal 14m2 space group. Then, its structure, elastic properties, electronic structure, and chemical bonding are investigated by first-principles calculations with the density functional theory. The phonon calculation and elastic constants confirm that the predicted NB2 is dynamically and mechanically stable, respectively. The large bulk modulus, large shear modulus, large Young's modulus, and small Poisson's ratio show that the 14m2 NB2 should be a new superhard material with a calculated theoretical Vickers hardness value of 66 GPa. Further analysis on density of states and electron localization function demonstrate that the strong B B and 13 N covalent bonds are the main reason for its high hardness in 14m2 NB2.
基金Project supported by the Science Foundation of Baoji University of Arts and Sciences,China(Grants Nos.ZK11061,ZK11135,and ZK12048)the Natural Science Foundation of the Education Committee of Shaanxi Province,China(Grant Nos.2013JK0637 and 2013JK0638)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2013JQ1007)
文摘Combining first-principles calculations with the particle swarm optimization (PSO) algorithm, we have explored the ground-state structure of Pd2N, whose structure is in debate although it is the first synthesized binary platinum group nitride. The ground-state structure is predicted to be tetragonal with space group P^-4m2, which is energetically more favorable than the previously proposed orthorhombic Co2N-type structure. The stability is confirmed by the subsequent calculations on the phonon dispersion curves and elastic constants. Furthermore, the calculated mechanical properties indicate that Pd2N has low incompressibility and is a common hard material.
文摘The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11205090 and 11175087)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJB140008)
文摘The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra ek of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2 L (L is the length of a subchain) with the coefficient A ~ 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for 7 = 0 and 0 〈 h 〈 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest- neighbor concurrence and its derivative are like those for the anisotropy transition.
文摘By means of improved ligand-field theory, the 'pure electronic'presure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of the R_1, R_2,B_1, B_2, B_3, and R′_3 lines and the ground-state zero-Geld-splitting of ruby have been uniformlycalculated. The calculation results are in very good agreement with all the experimental data. Atnormal pressure, ruby is a crystal with very strong crystal field. Thus, the admixture of ∣t_2~2(~3T_1)e~4T_2 】 and ∣t_2~(32)E> bases in the wavefunction of R_1 level of ruby is small at normalpressure, and it gradually decreases with increasing pressure, which causes the R_1-line PS of rubyto monotonously red shift with approximate linearity. The combined effect of the pure electronic PSof R_1 line and the PS of R_1 line due to EPI gives rise to the total PS of R_1 line. The analysesand comparisons among the features of R_1-line PS's of three laser crystals (ruby, GSGG:Cr~(3+) andGGG:Cr~(3+)) have been made, and the origin of their difference has been revealed.
文摘We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.
基金Supported by the National Natural Science Foundation of China (No.50771044)the Doctor Start up Foundation of Nanchang Hangkong University (EA201001034)Youth Science Foundation of Jiangxi Educational Committee (GJJ11157)
文摘With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by setting "imaging product".A new high symmetry,supervalence isomer of Al5C cluster,i.e.,D5h-Al5C,at the local minimum in the MEPs is detected.Several parameters,such as binding energy,HOMO-LUMO energy gap,vertical electron detachment energy and electron affinity energy,are calculated to characterize and evaluate the stability of three Al5C configurations,i.e.,D5h-Al5C,Cs-Al5C and C1-Al5C.The results show that the D5h-Al5C cluster is the ground state structure instead of Cs-Al5C.Due to the formation of many central σ bonds after polymerizing for D5h-Al5C,the decrease of the energy for HOMO orbit results in more territory for HOMO electrons of dislocation effect,then the energy difference between HOMO and LUMO is increasing to enhance the stability of molecules to produce such supervalence structure of Al5C cluster.The configuration evolution between D5h-Al5C,Cs-Al5C and C1-Al5C and the synthesis preference in the mode of Al5 + C → Al5C reveals that the Cs-Al5C and C1-Al5C con-figurations are permissive to coexist with D5h-Al5C structure in energetics.
基金Supported by the opening Foundation of state key Laboratory of Magnetic Resonance and Atomic and Molecularphysics, Wuhan Insti
文摘The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which implements such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be obtained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.
基金funding from the National Natural Science Foundation of China(NSFC)(Nos.11675046,21973023,and 11804308)the Program for Innovation Research of Science in Harbin Institute of Technology(No.A201412)+1 种基金the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(No.LBH-Q15060)the Natural Science Foundation of Henan Province under Grant No.202300410481.
文摘A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical ground state.UGSB is used to implement a SWAP gate in one step without individual addressing of atoms.Aiming at circumventing common issues in RAB-based gates including atomic decay,Doppler dephasing,and fluctuations in the interatomic coupling strength,we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime.In addition,on the basis of the proposed SWAP gates,we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB.The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.
基金supported by Zhejiang Province Program for Science and Technology(2020C01019)the National Natural Science Foundation of China(U1801661,11874249,11934010,12174329).
文摘Cavity magnomechanics has recently become a new platform for studying macroscopic quantum phenomena.The magnetostriction induced vibration mode of a large-size ferromagnet or ferrimagnet reaching its ground state represents a genuine macroscopic quantum state.Here we study the ground-state cooling of the mechanical vibration mode in a cavity magnomechanical system,and focus on the role of magnon squeezing in improving the cooling efficiency.The magnon squeezing is obtained by exploiting the magnon self-Kerr nonlinearity.We find that the magnon squeezing can significantly and even completely suppress the magnomechanical Stokes scattering.It thus becomes particularly useful in realizing ground-state cooling in the unresolved-sideband regime,where the conventional sideband cooling protocols become inefficient.We also find that the coupling to the microwave cavity plays only an adverse effect in mechanical cooling.This makes essentially the two-mode magnomechanical system(without involving the microwave cavity)a preferred system for cooling the mechanical motion,in which the magnon mode is established by a uniform bias magnetic field and a microwave drive field.
基金supported by National Natural Science Foundation of China (Grant No. 11601194)PhD Start-Up Funds of Jiangsu University of Science and Technology (Grant Nos. 1052931601 and 1052921513)
文摘In this paper, we consider the ground-states of the following M-coupled system:where p_(ij)+q_(ij)=2*:=2 N/(N-2)(N≥3). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.
文摘Recently Deng Conghao et al. proposed a new method for the direct solution of the many-body Schrdinger equation. Calculations based on this method for the ground-state energy of He indicated that the convergence of the hyperspherical harmonics (HH) expansion is slow and not satisfactory. A ground-state energy of-2.90328 a.u. was obtained in Ref.[2] with 361 HH and 4 GLF. In order to
文摘Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones,have played significant roles in the fields of organic synthesis,pharmaceuticals,and agrochemicals.The selective oxidation of the parent sulfides has been considered as one of the most straightforward methods for the construction of sulfoxides and sulfones.Therefore.
文摘By coupling with a qubit, we demonstrate that qubit decoherence can unambiguously detect the occurrence of ground-state degeneracy in many-body systems. We first demonstrate universality using the two-band model. Consequently, several exemplifications, focused on topological condensed matter systems in one, two, and three dimensions, are presented to validate our proposal. The key point is that qubit decoherence varies significantly when energy bands touch each other at the Fermi surface. In addition, it can partially reflect the degeneracy inside the band. This feature implies that qubit decoherence can be used for reliable diagnosis of ground-state degeneracy.
基金the NSF of China under Grant No.11904242the NSF of Hebei province under Grant No.A2019210280。
文摘We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical potential, four types of the ground-state phases are discovered. The effects of the disorder, the on-site interaction and the long-range interaction on the quantum coherence are studied. For the system without the long-range interaction, the quantum coherence changes from one periodic oscillation to two periodic oscillations as the onsite interaction increases. By considering the long-range interaction, the quantum coherence goes back to one periodic oscillation again. The on-site interaction itself suppresses the quantum coherence, both the on-site interaction and long-range interaction together enhance the quantum coherence with the weak disorder. If the disorder strength is increased beyond a critical value,they start to suppress the quantum coherence. In a regular four-chain Bose–Hubbard model, i.e.,each chain has many optical potentials, the ground-state phase transitions are obtained by using the cluster Gutzwiller mean-field method. Exotic ground-state phases are found, i.e., superfluid phase, integer Mott insulator phase, supersolid phase and loophole insulator phase. The combination of the loophole insulator phase and the supersolid phase expands the lobes with the half-integer filling per site for the small ratio β = t_(‖)/t_(⊥).