The paper reviews previous publications and reports some comments about a semi empirical model of the growth and decay process of a planktonic microbial culture. After summarizing and reshaping some fundamental mathem...The paper reviews previous publications and reports some comments about a semi empirical model of the growth and decay process of a planktonic microbial culture. After summarizing and reshaping some fundamental mathematical expressions, the paper highlights the reasons for the choice of a suitable time origin that makes the parameters of the model self-consistent. Besides the potential applications to predictive microbiology studies and to effects of bactericidal drugs, the model allows a suitable proxy of the fitness of the microbial culture, which can be of interest for the studies on the evolution across some thousand generations of a Long Term Evolution Experiment.展开更多
Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to tmsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phe...Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to tmsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.展开更多
The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single ...The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the devel- oped model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions ofpretreated MSW.展开更多
文摘The paper reviews previous publications and reports some comments about a semi empirical model of the growth and decay process of a planktonic microbial culture. After summarizing and reshaping some fundamental mathematical expressions, the paper highlights the reasons for the choice of a suitable time origin that makes the parameters of the model self-consistent. Besides the potential applications to predictive microbiology studies and to effects of bactericidal drugs, the model allows a suitable proxy of the fitness of the microbial culture, which can be of interest for the studies on the evolution across some thousand generations of a Long Term Evolution Experiment.
基金The National Natural Science Foundation of China (No. 50178040) the Royal Society of UK and the Hi-Tech Research and Development Program(863) of China(No. 2003AA601080)
文摘Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to tmsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.
文摘The cumulative landfill gas (LFG) production and its rate were simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential model, modified Gompertz model, single component combined growth and decay model and Gaussian function. Considering the behavior of the pretreated MSW landfill, a new multi component model was based on biochemical processes that occurring in landfilled pretreated MSW. The model was developed on the basis of single component combined growth and decay model using an anaerobic landfill simulator reactor which treats the pretreated MSW. It includes three components of the degradation i.e. quickly degradable, moderately degradable and slowly degradable. Moreover, the devel- oped model was statistically analyzed for its goodness of fit. The results show that the multi components LFG production model is more suitable in comparison to the simulated models and can efficiently be used as a modeling tool for pretreated MSW landfills. The proposed model is likely to give assistance in sizing of LFG collection system, generates speedy results at lower cost, improves cost-benefit analysis and decreases LFG project risk. It also indicates the stabilization of the landfill and helps the managers in the reuse of the landfill space. The proposed model is limited to aerobically pretreated MSW landfill and also requires the values of delay times in LFG productions from moderately and slowly degradable fractions ofpretreated MSW.