Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathoge...Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.展开更多
[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for t...[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for the effects of their growth-promoting activities on the germination and growth of tomato plants.The bacteria with growth-promoting activity were preliminarily identified.[Result]Totally 59 endophytic bacterial strains were isolated from roots and stems of tomatoes,of which 4 showed significantly growth-promoting activity to germination and growth of tomato.The results suggest that these strains are endowed with the potential capability of growth-promoting.[Conclusion]The endophytic bacteria with growth-promoting activity were found among the isolates from tomato plants.This provided a good foundation for utilization of these bacteria with growth-promoting activity.展开更多
[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promo...[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promoting effects of bacterial suspension ~ff endophytic bacteria Itb57 and Itb295 on tobacco seedling un- der different treatment modes were studied using potting method in greenhouse. The antagonistic action of bacterial suspension of endophytic bacteria Itb57 and Itb295 on Phytophthora nicotianae, Alternaria alternata and Botrytis cinerea were measured by duel culture method. [ Result] Bacterial suspensions of enduphytic bacteria Itb57 and Itb295 had certain growth-promoting effects on tobacco seedling, which could significantly increase the fresh weight and dry weight in aerial part; the growth-promoting effect of soaking + spraying and irrigating treatment was the best. Itb57 strain had good antagonistic action against P. nicotianae. A. alterna- ta and B. cinerea, while Itb295 strain only had good antifungal effect against P. nicotianae. [ Conclusion] The results provided basis for the study and application of tobacco endophytic bacteria strains Itb57 and Itb295 in biocontrol of tobacco diseases.展开更多
Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t...Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.展开更多
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ...Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.展开更多
[Objectives] This study was conducted to explore the interaction between nitrogen-fixing and phosphate-solubilizing strains and the optimal combination of different functional strains,in order to provide a theoretical...[Objectives] This study was conducted to explore the interaction between nitrogen-fixing and phosphate-solubilizing strains and the optimal combination of different functional strains,in order to provide a theoretical basis for the development of PGPR compound fertilizers suitable for local environment.[Methods] In this study,16S rDNA gene sequence analysis was used to identify fast-growing and competitive strains from pasture nodules and rhizosphere soils in Guizhou Province,and three representative Rhizobia and phosphorus-solubilizing bacteria were chosen for the test of bacterial combination when reducing 50% of nitrogen and 30% of phosphorus.The effects of different strain combinations on the plant height,root length,aboveground and underground biomass of Lotus corniculatus L.were investigated,and the total nitrogen and total phosphorus contents of the plants were determined.[Results] The mixed bacterial agents could promote the increase of root biomass,and the effects of A1,A3,B3 and C3 were the most obvious.The fresh weight and dry weight of the roots of L.corniculatus increased by 30.35%-168.45% and 26.43%-180.00%,respectively,and A3,B3,B2 and C3 had the best effects.The total phosphorus content of the plants increased by 12.79%-55.25% compared with the CK2;and most of the bacterial agents with significant growth-promoting effects showed decreased total nitrogen contents,while those with non-significant growth-promoting effects showed significantly-increased total nitrogen contents,which were not as much as the CK1.Comprehensively,the most productive combination was C3,namely R27-2 Rhinohizobium fredii and P33-3 Stenotrophomonas rhizophila.[Conclusions] This study can provide a theoretical basis for the production and promotion of bacterial fertilizers.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise ...Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.展开更多
Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecolo...Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.展开更多
Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land...Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land plants and under field conditions.We investigated the effects of single and combined application of GPB,including free-living nitrogen-fixing bacteria(NFB),phosphate solubilizing bacteria(PSB),potassium solubilizing bacteria(KSB),a combination of NFB,PSB,and KSB(NPK),and control,at three drought stress treatments.In order to better understand the interactions between drought and GPB,we measured the morphological,biochemical,and physiological plant traits.The target plant was salt tree(Halimodendron Halodendron(Pall.)Voss),a legume shrub native to arid lands of Central and West Asia.All biofertilizer treatments enhanced the growth,physiology,and biochemistry of salt tree seedlings,and there were significant differences among the treatments.KSB and PSB treatments increased photosynthetic pigments,but KSB treatment was more efficient in transpiration rate and stomatal regulation and increased the soluble carbohydrates.PSB treatment had the highest effect on root traits,such as taproot length,root volume,cumulative root length,and the ratio of root to shoot.NFB treatment enhanced root diameter and induced biomass translocation between root systems.However,only the application of mixed biofertilizer(i.e.,NPK treatment)was the most significant treatment to improve all plant morphological and physiological characteristics of salt tree under drought stress.Therefore,our results provided improvement of some specific plant traits simultaneous with application of three biofertilizers to increase growth and establishment of salt tree seedlings in the degraded arid lands.展开更多
Background:Serratia ureilytica DW2 is a highly efficient phosphate-solubilizing bacteria isolated from Codonopsis pilosula rhizosphere soil that can promote the growth of C.pilosula;nonetheless,until now,no validated ...Background:Serratia ureilytica DW2 is a highly efficient phosphate-solubilizing bacteria isolated from Codonopsis pilosula rhizosphere soil that can promote the growth of C.pilosula;nonetheless,until now,no validated reference genes from the genus Serratia have been reported that can be used for the normalization of quantitative real-time polymerase chain reaction(RT–qPCR)data.Methods:To screen stable reference genes of S.ureilytica DW2,the expression of its eight candidate reference genes(16S rRNA,ftsZ,ftsA,mreB,recA,slyD,thiC,and zipA)under different treatment conditions(pH,temperature,culture time,and salt content)was assayed by RT–qPCR.The expression stability of these genes was analyzed using different algorithms(geNorm,NormFinder,and BestKeeper).To verify the reliability of the data,the expression of the glucose dehydrogenase(gdh)gene under different soluble phosphate levels was quantified using the most stably expressed reference gene.Results:The results showed that the zipA and 16S rRNA genes were the most stable reference genes,and the least stable genes were thiC and recA.The expression of gdh was consistent with the phosphate solubilization ability on plates containing the National Botanical Research Institute phosphate growth medium.Conclusion:Therefore,this study provides a stable and reliable reference gene of Serratia for the accurate quantification of functional gene expression in future studies.展开更多
The seed germination and tomato seedling tests showed that Bacillus subtilis SL-13 could promote the sprouting and seedling growth of tomato.The fresh and dry weight of tomato seedlings increased 42.86%and 18.75%,resp...The seed germination and tomato seedling tests showed that Bacillus subtilis SL-13 could promote the sprouting and seedling growth of tomato.The fresh and dry weight of tomato seedlings increased 42.86%and 18.75%,respectively.The control efficacies of the SL-13 to tomato Rhizoctonia rot were 20.65%and 35.23%in the greenhouse and field,respectively.The growth of the plant-pathogenic fungus Rhizoctonia solani was considerably inhibited in the presence of the strain SL-13 culture supernatant.The main antifungal protein was detected to be chitinase through vitro assay.The chitinase was purified with DEAE-Sepharose fast flow ion exchange column chromatography and Sephadex G-75 gel filtration for further characterization.The optimal pH and temperature for the chitinase activity were 7.0 and 50°C,respectively.It was demonstrated that the enzyme was stable at pH 5-9 and 40-60°C.70%of the enzyme activity was retained when incubated at 121°C and 0.11 MPa for 20 min,and the enzyme was not sensitive to protease K and ultraviolet radiation.Thus it is suitable for effective biological control in relatively unstable environment.展开更多
Rice sheath blight disease (ShB), caused by Rhizoctonia solani, gives rise to significant grain yield losses. The present study evaluated the efficacy of Integral, the commercial liquid formulation of Bacillus subti...Rice sheath blight disease (ShB), caused by Rhizoctonia solani, gives rise to significant grain yield losses. The present study evaluated the efficacy of Integral, the commercial liquid formulation of Bacillus subtilis strain MBI 600, against rice ShB and for plant growth promotion. In greenhouse studies, four log concentrations of Integral (from 2.2×10^6 to 2.2×10^9 cfu/mL) were used as seed treatment (ST). After 25 d, seedlings were dipped (SD) into Integral prior to transplanting. At 30 d after transplanting (DAT), leaf sheaths were inoculated with immature sclerotia of the pathogen. At 45 DAT, a foliar spray (FS) with Integral was applied to some treatments. The fungicide control was 50% carbendazim at 1.0 g/L, and a nontreated control was also included. Overall, there were 10 treatments, each with five replications. ShB severity was rated at 52 DAT, and seedling height and number of tillers per plant were rated at 60 DAT. In 2009, two field trials evaluated Integral at 2.2×10^8 and 2.2×10^9 cfu/mL. Integral was applied as ST, and seedlings were produced in a nursery bed. After 32 d, seedlings were treated with Integral as SD and transplanted into 10 m^2 blocks. Foliar sprays were given at 45 and 60 DAT. There were seven treatments, each with eight replications arranged as a factorial randomized complete block design. At 20 DAT, the plots were broadcast inoculated with R. solani produced on rice grains. Seedling height before transplanting, ShB severity at 90 DAT, and grain yield at harvest were recorded. Integral at 2.2×10^9 cfu/mL provided significant increase of seedling heights over other treatments under greenhouse conditions. The Integral treatments of ST + SD + FS at 2.2×10^9 cfu/mL significantly suppressed ShB over other treatments. In field studies, Integral provided significant increase of seedling height in nursery, and number of tillers per plant, compared with the control. ShB severity was significantly suppressed with higher concentrations of Integral compared to lower concentrations. Grain yield were the highest at an Integral concentration of 2.2×10^9 cfu/mL. Overall, Integral significantly reduced ShB severity, enhanced seedling growth, number of tillers per plant and grain yield as ST + SD + FS at the concentration of 2.2×10^9 cfu/mL under the conditions evaluated.展开更多
The copper(Ⅱ) complexes of pyridine-3-carboxylic acid (nicotinic acid) and pyridine-2-carboxylic acid (isonicotinic acid) were synthesized, and their structures were characterized by elemental analysis, infrare...The copper(Ⅱ) complexes of pyridine-3-carboxylic acid (nicotinic acid) and pyridine-2-carboxylic acid (isonicotinic acid) were synthesized, and their structures were characterized by elemental analysis, infrared spectrum, powder X-ray diffraction and so on. The results show that under experimental conditions, the ligands of synthesized copper nicotinate and copper isonicotinate are coordinated simultaneity with copper(Ⅱ) via the nitrogen of pyridine group and an oxygen of carboxylic acid group to form bidentate chelates. The crystal of copper nicotinate with two six-membered chelate rings belongs to monoclinic system, while that of copper isonicotinate having two five-membered chelate rings is of triclinic system. The tests show that the biological activities, such as the improvement of feed utilization, growth, anti-oxidation ability of organism and disease-resistant power, are different when copper nicotinate, copper inicotinate, copper-lysine chelate, copper-methionine chelate and copper sulphate are added in pig's feed, respectively. Due to its higher biological activity, less pollution and lower toxicity, copper nicotinate has wide potential applications as a feed additive.展开更多
Trichoderma is an important and widely used plant growth-promoting fungus(PGPF).In this study,stevia residue amended with amino acids hydrolyzed from animal carcasses was used for the production of Trichoderma guizhou...Trichoderma is an important and widely used plant growth-promoting fungus(PGPF).In this study,stevia residue amended with amino acids hydrolyzed from animal carcasses was used for the production of Trichoderma guizhouense NJAU 4742 by solid-state fermentation,and then its potential to promote corn plant growth was evaluated in combination with chemical fertilizer(CF)or organic fertilizer(OF).The highest spore number of 7×10^(9) CFU g^(–1) fresh weight was obtained under the following optimal parameters:material ratio of 50%(stevia residue:rice bran=1:1),pH value of 3.0(amended with 6.67%amino acids),initial moisture content of 60%,inoculum size of 10%,material thickness of 3 cm and an incubation time of 4 days.The aboveground corn plant biomass obtained with T.guizhouense applied alone and with CF treatments were slightly higher than those of no fertilizer control and CF treatments,respectively.However,T.guizhouense applied with OF significantly(P<0.05)increased aboveground biomass compared to OF and yielded the highest aboveground biomass among all the treatments.Moreover,T.guizhouense applications primarily influenced the fungal bulk soil community composition,among which three OTUs(OTU_(2) and OTU_(9) classified as Chaetomium,and OTU_(4)classified as Trichoderma)were stimulated in both bulk and rhizosphere soil.Notably,a specific OTU_(3)(Phymatotrichopsis)was only stimulated by T.guizhouense applied with OF,possibly leading to high soil productivity.These results show that it is feasible to employ stevia residue in the eco-friendly fermentation of T.guizhouense,which is strongly suggested for enhancing OF applications.展开更多
Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils....Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils. Here, we report the application ofa PCR primer sets targeting genes encoding the main antibiotic groups. Distribution of the genes was variably distributed across type strains of 28 species with no phylogenetic groupingfor the detected antibioticsgenes, phlD for 2,4-diacetylphloroglucinol (2,4-DAPG) and phzCD for phenazine-1-carboxylic acid or hcnBC for hydrogen cyanide production. Analysis of field soils showed that primer sets for phlD and phzCD detected these genes in a fallowed neutral pH soil following wheat production, but that the copy numbers were below the detection limits in bulk soils having an acidic pH. In contrast, PCR products for the phzCD, pltc and hcnBc genes were detectable in mature root zones following plantingwith wheat. The ability to rapidly characterize populations of antibiotics producers using specific primer sets will improve our ability to assess the impacts of management practices on the functional traits of Pseudomonas spp. populations in agricultural soils.展开更多
Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biof...Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biofertilzers could meet this requirement. Biofertilizer is a natural organic fertilizer that helps to provide all the nutrients required by the plants and helps to increase the quality of the soil with a natural microorganism environment. This paper reviewed the types of biofertilzers, the biological basic of biofertilizers in plant growth promotion. This paper also assayed the bidirectional information exchange between plant-microbes in rhizoshpere and the signal pathway of plant growth- promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) in the course of plant infection. At last, the challenges of the application and the promising future of biofertilizers were also discussed.展开更多
Arbuscular mycorrhizal(AM)fungi reside in the rhizosphere and form mutualistic associations with plant roots.They promote photosynthesis,improve stress resistance,and induce secondary metabolite biosynthesis in host m...Arbuscular mycorrhizal(AM)fungi reside in the rhizosphere and form mutualistic associations with plant roots.They promote photosynthesis,improve stress resistance,and induce secondary metabolite biosynthesis in host medicinal plants.The AM fungi that are symbiotic with medicinal plants comprise a wide array of species and have abundant germplasm resources.Though research on the AM fungi in medicinal plants began relatively recently,it has nonetheless become an investigative hot spot.Several scholars have explored the diversity and the growth-promoting effects of mycorrhizal fungi in hundreds of medicinal plants.Current research on symbiotic AM fungi in medicinal plants has focused mainly on the effects of inoculating host plants with symbiotic mycorrhizal fungi.However,research on the symbiotic AM fungi in medicinal plants continues to expand,and further study is required to determine the mechanisms by which AM fungi interact with host plants.This paper introduces the diversity of symbiotic AM fungi of medicinal plants and the effects of AM fungi on rhizosphere soil of medicinal plants,including soil structure,microbiota,enzyme activities,etc.This review focuses on the effects of AM fungi on medicinal plants,including antioxidant enzyme systems,drought resistance,nutrient absorption profiles of macroand micronutrients,accumulation of secondary metabolites such as terpenes,phenolic compounds,and nitrogenous compounds,and prevention of diseases.This review is expected to provide a reference for the application of AM fungi in medicinal plant cultivation,biological control,resource conservation,and the sustainable development of the traditional Chinese medicine industry.展开更多
The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alte...The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alternative in agriculture. PGPRs have beneficial effects not only in promoting plant growth but also have shown their potential as biological control agent, being able to inhibit plant pathogens. Here, we investigated the use of PGPR <em>Paraburkholderia</em> sp. strain SOS3 to provide disease protection in rice (<em>Oryza sativa</em> L.). The antagonistic activity of SOS3 against five fungal pathogens of rice was assessed by dual culture on plates and on rice seedlings. The results showed that on plate assay, SOS3 inhibits the growth of <em>Curvularia lunata</em>, <em>Rhizoctonia solani</em>, <em>Pyricularia oryzae</em>, <em>Helminthosporium oryzae</em>, and <em>Fusarium moniliforme</em> by 17.2%, 1.1%, 8.3%, 32.5%, and 35.4%, respectively. When inoculated on rice seeds, SOS3 promotes seed germination and significantly reduces disease symptoms in plants infected with <em>R. solani</em>. These results suggest that SOS3 has a great potential to be used in rice agriculture to combat the “Sheath Blight” disease.展开更多
Various microorganisms live in association with different parts of plants and can be harmful,neutral,or beneficial to plant health.Some microbial inhabitants of plants can control plant diseases by contesting with,pre...Various microorganisms live in association with different parts of plants and can be harmful,neutral,or beneficial to plant health.Some microbial inhabitants of plants can control plant diseases by contesting with,predating on,or antagonizing plant pathogens and by inducing systems for plant defense.A range of methods,including plant growth-promoting microorganisms(PGPMs)as biological control agents(BCAs)(BCA-PGPMs)are used for the biological management and control of plant pathogens.Some BCAs interact with plants by inducing resistance or priming plants without direct interaction with the pathogen.Other BCAs operate via nutrient competition or other mechanisms to modulate the growth conditions for the pathogen.Generally,PGPMs can be applied alone or together with other chemicals or carriers to control various crop diseases.This review highlights the effective types of BCA-PGPMs and their applications,roles,carrier based-formulations,and responses to rice(Oryza sativa L.)pathogens.Future plant disease management prospects are promising,and growers’increasing demand for BCA-PGPM products can be exploited as an effective approach to the management of plant diseases,as well as to improve yield,environmental protection,biological resources,and agricultural system sustainability.展开更多
基金financially supported by the Third Xinjiang Comprehensive Scientific Expedition (2022xjkk020605)the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program) (2020E01047)supported by the Introduction Project of High-level Talents in Xinjiang Uygur Autonomous Region, China
文摘Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.
基金Supported by the Science Foundation for the Introduced High-level Talents in Anhui Agricultural University(yj2008-1)~~
文摘[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for the effects of their growth-promoting activities on the germination and growth of tomato plants.The bacteria with growth-promoting activity were preliminarily identified.[Result]Totally 59 endophytic bacterial strains were isolated from roots and stems of tomatoes,of which 4 showed significantly growth-promoting activity to germination and growth of tomato.The results suggest that these strains are endowed with the potential capability of growth-promoting.[Conclusion]The endophytic bacteria with growth-promoting activity were found among the isolates from tomato plants.This provided a good foundation for utilization of these bacteria with growth-promoting activity.
基金Supported by Natural Science Foundation of Chongqing City(CSTC,2009BB1294)~~
文摘[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promoting effects of bacterial suspension ~ff endophytic bacteria Itb57 and Itb295 on tobacco seedling un- der different treatment modes were studied using potting method in greenhouse. The antagonistic action of bacterial suspension of endophytic bacteria Itb57 and Itb295 on Phytophthora nicotianae, Alternaria alternata and Botrytis cinerea were measured by duel culture method. [ Result] Bacterial suspensions of enduphytic bacteria Itb57 and Itb295 had certain growth-promoting effects on tobacco seedling, which could significantly increase the fresh weight and dry weight in aerial part; the growth-promoting effect of soaking + spraying and irrigating treatment was the best. Itb57 strain had good antagonistic action against P. nicotianae. A. alterna- ta and B. cinerea, while Itb295 strain only had good antifungal effect against P. nicotianae. [ Conclusion] The results provided basis for the study and application of tobacco endophytic bacteria strains Itb57 and Itb295 in biocontrol of tobacco diseases.
文摘Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.
基金the National Key Research and Development Program of China(No.2017YFE0119100)the National Natural Science Foundation of China(No.42107513)the Key Research and Development Program of Gansu(No.21YF5FA151)。
文摘Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.
基金Supported by Guizhou Province Science and Technology Support Program(QKHZC[2016]2504,[2019]2359)
文摘[Objectives] This study was conducted to explore the interaction between nitrogen-fixing and phosphate-solubilizing strains and the optimal combination of different functional strains,in order to provide a theoretical basis for the development of PGPR compound fertilizers suitable for local environment.[Methods] In this study,16S rDNA gene sequence analysis was used to identify fast-growing and competitive strains from pasture nodules and rhizosphere soils in Guizhou Province,and three representative Rhizobia and phosphorus-solubilizing bacteria were chosen for the test of bacterial combination when reducing 50% of nitrogen and 30% of phosphorus.The effects of different strain combinations on the plant height,root length,aboveground and underground biomass of Lotus corniculatus L.were investigated,and the total nitrogen and total phosphorus contents of the plants were determined.[Results] The mixed bacterial agents could promote the increase of root biomass,and the effects of A1,A3,B3 and C3 were the most obvious.The fresh weight and dry weight of the roots of L.corniculatus increased by 30.35%-168.45% and 26.43%-180.00%,respectively,and A3,B3,B2 and C3 had the best effects.The total phosphorus content of the plants increased by 12.79%-55.25% compared with the CK2;and most of the bacterial agents with significant growth-promoting effects showed decreased total nitrogen contents,while those with non-significant growth-promoting effects showed significantly-increased total nitrogen contents,which were not as much as the CK1.Comprehensively,the most productive combination was C3,namely R27-2 Rhinohizobium fredii and P33-3 Stenotrophomonas rhizophila.[Conclusions] This study can provide a theoretical basis for the production and promotion of bacterial fertilizers.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
基金supported by SEP,Grant DSA/103.5/15/10976 and VIEP-BUAP,Grant 20 Sub-Program。
文摘Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.
基金Supported by Hebei Provincial Key R&D projects(21327306D)Hebei Provincial Key R&D projects(20326807D)Chengde Science and Technology Research and Development Planning Project(202103B003).
文摘Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.
基金supported by the Ferdowsi University of Mashhad,Iran(46099).
文摘Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land plants and under field conditions.We investigated the effects of single and combined application of GPB,including free-living nitrogen-fixing bacteria(NFB),phosphate solubilizing bacteria(PSB),potassium solubilizing bacteria(KSB),a combination of NFB,PSB,and KSB(NPK),and control,at three drought stress treatments.In order to better understand the interactions between drought and GPB,we measured the morphological,biochemical,and physiological plant traits.The target plant was salt tree(Halimodendron Halodendron(Pall.)Voss),a legume shrub native to arid lands of Central and West Asia.All biofertilizer treatments enhanced the growth,physiology,and biochemistry of salt tree seedlings,and there were significant differences among the treatments.KSB and PSB treatments increased photosynthetic pigments,but KSB treatment was more efficient in transpiration rate and stomatal regulation and increased the soluble carbohydrates.PSB treatment had the highest effect on root traits,such as taproot length,root volume,cumulative root length,and the ratio of root to shoot.NFB treatment enhanced root diameter and induced biomass translocation between root systems.However,only the application of mixed biofertilizer(i.e.,NPK treatment)was the most significant treatment to improve all plant morphological and physiological characteristics of salt tree under drought stress.Therefore,our results provided improvement of some specific plant traits simultaneous with application of three biofertilizers to increase growth and establishment of salt tree seedlings in the degraded arid lands.
基金supported by the General Program of Natural Science Foundation of China(32071770)the Fundamental Research Program of Shanxi Province(Award No.202103021223380)the Fund for Shanxi“1331 Project”Key Subjects Construction(1331KSC).
文摘Background:Serratia ureilytica DW2 is a highly efficient phosphate-solubilizing bacteria isolated from Codonopsis pilosula rhizosphere soil that can promote the growth of C.pilosula;nonetheless,until now,no validated reference genes from the genus Serratia have been reported that can be used for the normalization of quantitative real-time polymerase chain reaction(RT–qPCR)data.Methods:To screen stable reference genes of S.ureilytica DW2,the expression of its eight candidate reference genes(16S rRNA,ftsZ,ftsA,mreB,recA,slyD,thiC,and zipA)under different treatment conditions(pH,temperature,culture time,and salt content)was assayed by RT–qPCR.The expression stability of these genes was analyzed using different algorithms(geNorm,NormFinder,and BestKeeper).To verify the reliability of the data,the expression of the glucose dehydrogenase(gdh)gene under different soluble phosphate levels was quantified using the most stably expressed reference gene.Results:The results showed that the zipA and 16S rRNA genes were the most stable reference genes,and the least stable genes were thiC and recA.The expression of gdh was consistent with the phosphate solubilization ability on plates containing the National Botanical Research Institute phosphate growth medium.Conclusion:Therefore,this study provides a stable and reliable reference gene of Serratia for the accurate quantification of functional gene expression in future studies.
基金Supported by the National Natural Science Foundation of China(20776017) the Xinjiang Uygur Autonomous Region High-tech Research and Development Project(20081108)+1 种基金 the Fok Ying Tung Education Foundation(101071) the Xinjiang Bingtuan Key Science and Technology Industry Project(2008GG24)
文摘The seed germination and tomato seedling tests showed that Bacillus subtilis SL-13 could promote the sprouting and seedling growth of tomato.The fresh and dry weight of tomato seedlings increased 42.86%and 18.75%,respectively.The control efficacies of the SL-13 to tomato Rhizoctonia rot were 20.65%and 35.23%in the greenhouse and field,respectively.The growth of the plant-pathogenic fungus Rhizoctonia solani was considerably inhibited in the presence of the strain SL-13 culture supernatant.The main antifungal protein was detected to be chitinase through vitro assay.The chitinase was purified with DEAE-Sepharose fast flow ion exchange column chromatography and Sephadex G-75 gel filtration for further characterization.The optimal pH and temperature for the chitinase activity were 7.0 and 50°C,respectively.It was demonstrated that the enzyme was stable at pH 5-9 and 40-60°C.70%of the enzyme activity was retained when incubated at 121°C and 0.11 MPa for 20 min,and the enzyme was not sensitive to protease K and ultraviolet radiation.Thus it is suitable for effective biological control in relatively unstable environment.
文摘Rice sheath blight disease (ShB), caused by Rhizoctonia solani, gives rise to significant grain yield losses. The present study evaluated the efficacy of Integral, the commercial liquid formulation of Bacillus subtilis strain MBI 600, against rice ShB and for plant growth promotion. In greenhouse studies, four log concentrations of Integral (from 2.2×10^6 to 2.2×10^9 cfu/mL) were used as seed treatment (ST). After 25 d, seedlings were dipped (SD) into Integral prior to transplanting. At 30 d after transplanting (DAT), leaf sheaths were inoculated with immature sclerotia of the pathogen. At 45 DAT, a foliar spray (FS) with Integral was applied to some treatments. The fungicide control was 50% carbendazim at 1.0 g/L, and a nontreated control was also included. Overall, there were 10 treatments, each with five replications. ShB severity was rated at 52 DAT, and seedling height and number of tillers per plant were rated at 60 DAT. In 2009, two field trials evaluated Integral at 2.2×10^8 and 2.2×10^9 cfu/mL. Integral was applied as ST, and seedlings were produced in a nursery bed. After 32 d, seedlings were treated with Integral as SD and transplanted into 10 m^2 blocks. Foliar sprays were given at 45 and 60 DAT. There were seven treatments, each with eight replications arranged as a factorial randomized complete block design. At 20 DAT, the plots were broadcast inoculated with R. solani produced on rice grains. Seedling height before transplanting, ShB severity at 90 DAT, and grain yield at harvest were recorded. Integral at 2.2×10^9 cfu/mL provided significant increase of seedling heights over other treatments under greenhouse conditions. The Integral treatments of ST + SD + FS at 2.2×10^9 cfu/mL significantly suppressed ShB over other treatments. In field studies, Integral provided significant increase of seedling height in nursery, and number of tillers per plant, compared with the control. ShB severity was significantly suppressed with higher concentrations of Integral compared to lower concentrations. Grain yield were the highest at an Integral concentration of 2.2×10^9 cfu/mL. Overall, Integral significantly reduced ShB severity, enhanced seedling growth, number of tillers per plant and grain yield as ST + SD + FS at the concentration of 2.2×10^9 cfu/mL under the conditions evaluated.
基金Supported by the Natural Science Foundation of Fujian Province (B0510012) and the Science and Technology of Science Foundation of Fujian Education Department (JA04189)
文摘The copper(Ⅱ) complexes of pyridine-3-carboxylic acid (nicotinic acid) and pyridine-2-carboxylic acid (isonicotinic acid) were synthesized, and their structures were characterized by elemental analysis, infrared spectrum, powder X-ray diffraction and so on. The results show that under experimental conditions, the ligands of synthesized copper nicotinate and copper isonicotinate are coordinated simultaneity with copper(Ⅱ) via the nitrogen of pyridine group and an oxygen of carboxylic acid group to form bidentate chelates. The crystal of copper nicotinate with two six-membered chelate rings belongs to monoclinic system, while that of copper isonicotinate having two five-membered chelate rings is of triclinic system. The tests show that the biological activities, such as the improvement of feed utilization, growth, anti-oxidation ability of organism and disease-resistant power, are different when copper nicotinate, copper inicotinate, copper-lysine chelate, copper-methionine chelate and copper sulphate are added in pig's feed, respectively. Due to its higher biological activity, less pollution and lower toxicity, copper nicotinate has wide potential applications as a feed additive.
基金the National Key R&D Program of China(2018YFD0500201 and 2018YFD0201300)the Natural Science Foundation of Jiangsu Province,China(BK20180539)+3 种基金the National Science Foundation for Young Scientists of China(31801949)the National Science Foundation for Postdoctoral Scientists of China(2018M632318)the Agricultural Science and Technology Independent Innovation Fund Project of Jiangsu Province(CX(19)2026)the Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD)。
文摘Trichoderma is an important and widely used plant growth-promoting fungus(PGPF).In this study,stevia residue amended with amino acids hydrolyzed from animal carcasses was used for the production of Trichoderma guizhouense NJAU 4742 by solid-state fermentation,and then its potential to promote corn plant growth was evaluated in combination with chemical fertilizer(CF)or organic fertilizer(OF).The highest spore number of 7×10^(9) CFU g^(–1) fresh weight was obtained under the following optimal parameters:material ratio of 50%(stevia residue:rice bran=1:1),pH value of 3.0(amended with 6.67%amino acids),initial moisture content of 60%,inoculum size of 10%,material thickness of 3 cm and an incubation time of 4 days.The aboveground corn plant biomass obtained with T.guizhouense applied alone and with CF treatments were slightly higher than those of no fertilizer control and CF treatments,respectively.However,T.guizhouense applied with OF significantly(P<0.05)increased aboveground biomass compared to OF and yielded the highest aboveground biomass among all the treatments.Moreover,T.guizhouense applications primarily influenced the fungal bulk soil community composition,among which three OTUs(OTU_(2) and OTU_(9) classified as Chaetomium,and OTU_(4)classified as Trichoderma)were stimulated in both bulk and rhizosphere soil.Notably,a specific OTU_(3)(Phymatotrichopsis)was only stimulated by T.guizhouense applied with OF,possibly leading to high soil productivity.These results show that it is feasible to employ stevia residue in the eco-friendly fermentation of T.guizhouense,which is strongly suggested for enhancing OF applications.
文摘Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils. Here, we report the application ofa PCR primer sets targeting genes encoding the main antibiotic groups. Distribution of the genes was variably distributed across type strains of 28 species with no phylogenetic groupingfor the detected antibioticsgenes, phlD for 2,4-diacetylphloroglucinol (2,4-DAPG) and phzCD for phenazine-1-carboxylic acid or hcnBC for hydrogen cyanide production. Analysis of field soils showed that primer sets for phlD and phzCD detected these genes in a fallowed neutral pH soil following wheat production, but that the copy numbers were below the detection limits in bulk soils having an acidic pH. In contrast, PCR products for the phzCD, pltc and hcnBc genes were detectable in mature root zones following plantingwith wheat. The ability to rapidly characterize populations of antibiotics producers using specific primer sets will improve our ability to assess the impacts of management practices on the functional traits of Pseudomonas spp. populations in agricultural soils.
文摘Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biofertilzers could meet this requirement. Biofertilizer is a natural organic fertilizer that helps to provide all the nutrients required by the plants and helps to increase the quality of the soil with a natural microorganism environment. This paper reviewed the types of biofertilzers, the biological basic of biofertilizers in plant growth promotion. This paper also assayed the bidirectional information exchange between plant-microbes in rhizoshpere and the signal pathway of plant growth- promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) in the course of plant infection. At last, the challenges of the application and the promising future of biofertilizers were also discussed.
基金This work was supported by the National Natural Science Foundation of China(31960272)Basic research fund of Guangxi Academy of Sciences(CQZE-1909)the Guangxi Scientific and Technological Project(Guike AB18126065).
文摘Arbuscular mycorrhizal(AM)fungi reside in the rhizosphere and form mutualistic associations with plant roots.They promote photosynthesis,improve stress resistance,and induce secondary metabolite biosynthesis in host medicinal plants.The AM fungi that are symbiotic with medicinal plants comprise a wide array of species and have abundant germplasm resources.Though research on the AM fungi in medicinal plants began relatively recently,it has nonetheless become an investigative hot spot.Several scholars have explored the diversity and the growth-promoting effects of mycorrhizal fungi in hundreds of medicinal plants.Current research on symbiotic AM fungi in medicinal plants has focused mainly on the effects of inoculating host plants with symbiotic mycorrhizal fungi.However,research on the symbiotic AM fungi in medicinal plants continues to expand,and further study is required to determine the mechanisms by which AM fungi interact with host plants.This paper introduces the diversity of symbiotic AM fungi of medicinal plants and the effects of AM fungi on rhizosphere soil of medicinal plants,including soil structure,microbiota,enzyme activities,etc.This review focuses on the effects of AM fungi on medicinal plants,including antioxidant enzyme systems,drought resistance,nutrient absorption profiles of macroand micronutrients,accumulation of secondary metabolites such as terpenes,phenolic compounds,and nitrogenous compounds,and prevention of diseases.This review is expected to provide a reference for the application of AM fungi in medicinal plant cultivation,biological control,resource conservation,and the sustainable development of the traditional Chinese medicine industry.
文摘The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alternative in agriculture. PGPRs have beneficial effects not only in promoting plant growth but also have shown their potential as biological control agent, being able to inhibit plant pathogens. Here, we investigated the use of PGPR <em>Paraburkholderia</em> sp. strain SOS3 to provide disease protection in rice (<em>Oryza sativa</em> L.). The antagonistic activity of SOS3 against five fungal pathogens of rice was assessed by dual culture on plates and on rice seedlings. The results showed that on plate assay, SOS3 inhibits the growth of <em>Curvularia lunata</em>, <em>Rhizoctonia solani</em>, <em>Pyricularia oryzae</em>, <em>Helminthosporium oryzae</em>, and <em>Fusarium moniliforme</em> by 17.2%, 1.1%, 8.3%, 32.5%, and 35.4%, respectively. When inoculated on rice seeds, SOS3 promotes seed germination and significantly reduces disease symptoms in plants infected with <em>R. solani</em>. These results suggest that SOS3 has a great potential to be used in rice agriculture to combat the “Sheath Blight” disease.
基金Raiganj University,IndiaInstituto Tecnológico de Sonora,México+7 种基金Campo Experimental Norman E.Borlaug-Instituto Nacional de Investigaciones Forestales,Agrícolas y Pecuarias(INIFAP),MéxicoUniversidad Nacional Experimental del Táchira,VenezuelaFederal University of Pernambuco,BrazilFederal University of Agriculture,NigeriaUniversity of Tabriz,IranIndian Council of Agricultural Research(ICAR)-National Rice Research Institute for supportthe Government of West Bengal,India for the Swami Vivekananda Merit Cum Means Ph.D.Scholarship(No.WBP191584588825)the Department of Science and Technology(DST),India for Inspire Fellowship(No.IF190457)。
文摘Various microorganisms live in association with different parts of plants and can be harmful,neutral,or beneficial to plant health.Some microbial inhabitants of plants can control plant diseases by contesting with,predating on,or antagonizing plant pathogens and by inducing systems for plant defense.A range of methods,including plant growth-promoting microorganisms(PGPMs)as biological control agents(BCAs)(BCA-PGPMs)are used for the biological management and control of plant pathogens.Some BCAs interact with plants by inducing resistance or priming plants without direct interaction with the pathogen.Other BCAs operate via nutrient competition or other mechanisms to modulate the growth conditions for the pathogen.Generally,PGPMs can be applied alone or together with other chemicals or carriers to control various crop diseases.This review highlights the effective types of BCA-PGPMs and their applications,roles,carrier based-formulations,and responses to rice(Oryza sativa L.)pathogens.Future plant disease management prospects are promising,and growers’increasing demand for BCA-PGPM products can be exploited as an effective approach to the management of plant diseases,as well as to improve yield,environmental protection,biological resources,and agricultural system sustainability.