期刊文献+
共找到4,441篇文章
< 1 2 223 >
每页显示 20 50 100
Protective mechanism of Coprinus comatus polysaccharide on acute alcoholic liver injury in mice,the metabolomics and gut microbiota investigation 被引量:3
1
作者 Jinyan Yu Jianguang Sun +4 位作者 Min Sun Weidong Li Dongmei Qi Yongqing Zhang Chunchao Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期401-413,共13页
Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopath... Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways. 展开更多
关键词 Coprinus comatus POLYSACCHARIDE Alcoholic liver disease Metabolomics gut microbiota
下载PDF
Major royal-jelly proteins intake modulates immune functions and gut microbiota in mice 被引量:2
2
作者 Hang Wu Shican Zhou +7 位作者 Wenjuan Ning Xiao Wu Xiaoxiao Xu Zejin Liu Wenhua Liu Kun Liu Lirong Shen Junpeng Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期444-453,共10页
In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the prolifer... In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability. 展开更多
关键词 Major royal-jelly proteins Immunity ESTROGEN gut microbiota Cytokines
下载PDF
Hemorrhagic transformation in patients with large-artery atherosclerotic stroke is associated with the gut microbiota and lipopolysaccharide 被引量:1
3
作者 Qin Huang Minping Wei +3 位作者 Xianjing Feng Yunfang Luo Yunhai Liu Jian Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1532-1540,共9页
Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an importa... Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke. 展开更多
关键词 gut microbiota hemorrhagic transformation INFLAMMATION LIPOPOLYSACCHARIDE STROKE
下载PDF
Dual-directional regulation of spinal cord injury and the gut microbiota 被引量:1
4
作者 Yinjie Cui Jingyi Liu +7 位作者 Xiao Lei Shuwen Liu Haixia Chen Zhijian Wei Hongru Li Yuan Yang Chenguang Zheng Zhongzheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期548-556,共9页
There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis.The spinal cord is a vital important part of the central nervous sys... There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis.The spinal cord is a vital important part of the central nervous system;however,the underlying association between spinal cord injury and gut interactions remains unknown.Recent studies suggest that patients with spinal cord injury frequently experience intestinal dysfunction and gut dysbiosis.Alterations in the gut microbiota can cause disruption in the intestinal barrier and trigger neurogenic inflammatory responses which may impede recovery after spinal cord injury.This review summarizes existing clinical and basic research on the relationship between the gut microbiota and spinal cord injury.Our research identified three key points.First,the gut microbiota in patients with spinal cord injury presents a key characteristic and gut dysbiosis may profoundly influence multiple organs and systems in patients with spinal cord injury.Second,following spinal cord injury,weakened intestinal peristalsis,prolonged intestinal transport time,and immune dysfunction of the intestine caused by abnormal autonomic nerve function,as well as frequent antibiotic treatment,may induce gut dysbiosis.Third,the gut microbiota and associated metabolites may act on central neurons and affect recovery after spinal cord injury;cytokines and the Toll-like receptor ligand pathways have been identified as crucial mechanisms in the communication between the gut microbiota and central nervous system.Fecal microbiota transplantation,probiotics,dietary interventions,and other therapies have been shown to serve a neuroprotective role in spinal cord injury by modulating the gut microbiota.Therapies targeting the gut microbiota or associated metabolites are a promising approach to promote functional recovery and improve the complications of spinal cord injury. 展开更多
关键词 CHEMOKINES CYTOKINES gut microbiota NLRP3 spinal cord injury Toll-like receptor ligand TRYPTOPHAN
下载PDF
Bile acids,gut microbiota,and therapeutic insights in hepatocellular carcinoma 被引量:1
5
作者 Yang Song Harry CH Lau +1 位作者 Xiang Zhang Jun Yu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第2期144-162,共19页
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ... Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy. 展开更多
关键词 Bile acid gut microbiota hepatocellular carcinoma THERAPEUTICS microbiota modulation
下载PDF
Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis 被引量:1
6
作者 Xue Bai Rongzhan Fu +5 位作者 Yannan Liu Jianjun Deng Qiang Fei Zhiguang Duan Chenhui Zhu Daidi Fan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第2期259-275,共17页
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefo... The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC. 展开更多
关键词 Colorectal cancer GINSENOSIDE Immune cells gut microbiota
下载PDF
Fecal microbiota transplantation:whole grain highland barley improves glucose metabolism by changing gut microbiota 被引量:1
7
作者 Xin Ren Fulong Zhang +3 位作者 Min Zhang Yuan Fang Zenglong Chen Meili Huan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2014-2024,共11页
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro... Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition. 展开更多
关键词 Highland barley DIABETES Glucose metabolism gut microbiota Fecal bacteria transplantation
下载PDF
Calcium-fortified fresh milk ameliorates postmenopausal osteoporosis via regulation of bone metabolism and gut microbiota in ovariectomized rats 被引量:1
8
作者 Qishan Wang Bin Liu +5 位作者 Xianping Li Junying Zhao Zongshen Zhang Weicang Qiao Xinyue Wei Lijun Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1258-1270,共13页
The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorat... The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis. 展开更多
关键词 Dairy products CALCIUM Vitamin D Bone turnover markers gut microbiota Postmenopausal osteoporosis
下载PDF
Gut microbiota induced abnormal amino acids and their correlation with diabetic retinopathy 被引量:1
9
作者 Sheng-Qun Jiang Su-Na Ye +4 位作者 Yin-Hua Huang Yi-Wen Ou Ke-Yang Chen Jian-Su Chen Shi-Bo Tang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期883-895,共13页
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples... AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR. 展开更多
关键词 proliferative retinopathy gut microbiota Ruminococcaceae amino acid metabolism ARGININE
下载PDF
D-Psicose intake exacerbates dextran sulfate sodium-induced colitis in mice through alteration in the gut microbiota and dysfunction of mucosal barrier 被引量:1
10
作者 Xuejiao Zhang Ang Li +5 位作者 Yuanyifei Wang Jin Wang Bowei Zhang Yan Zhang Jingmin Liu Shuo Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期173-182,共10页
D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the imp... D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the impact of D-psicose on colitis remains vague.Here,we firstly evaluated the effect of the D-psicose prophylactic intervention on dextran sulfate sodium-induced colitis in C57BL/6 mice.The pathological symptoms,inflammatory cytokines levels,gut microbiota composition,short chain fatty acids(SCFAs)production and colonic barrier integrity were comprehensively evaluated.The results confirmed that D-psicose intervention aggravated colitis,characterized by the exacerbation of colon shortening,increase of colonic inflammatory infiltration,and marked exaltation of disease activity indices and IL-6,IL-1βand TNF-αlevels.Further,the dysfunction of gut microbiota was identified in the psicose group.The abundance of pro-inflammatory bacteria Lachnospiraceae_NK4A136_group was significantly up-regulated while the abundance of probiotics Akkermansia and Lactobacillus were significantly down-regulated in the psicose group compared to the model group.Moreover,the production of SCFAs was suppressed in the psicose group,accompanied by a decrease in the level of mucin 2(Muc-2).Collectively,the underlying mechanism of the exacerbation of colitis by D-psicose intervention might be attributed to microbiota dysfunction accompanied by the reduction of SCFAs,which leads to the damage of the mucosal barrier and the intensifi cation of inflammatory invasion. 展开更多
关键词 D-Psicose COLITIS gut microbiota Short chain fatty acids Mucin 2
下载PDF
Effects of Rosa roxburghii&edible fungus fermentation broth on immune response and gut microbiota in immunosuppressed mice 被引量:1
11
作者 Dechang Xu Jielun Hu +4 位作者 Yadong Zhong Yanli Zhang Wenting Liu Shaoping Nie Mingyong Xie 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期154-165,共12页
With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune func... With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune function and gut health in Cyclophosphamide induced immunosuppressed mice were investigated.Results showed that REFB could improve the immune organ index,and promote the proliferation and differentiation of splenic T lymphocytes.In addition,it attenuated intestinal mucosal damage and improved intestinal cellular immunity.REFB administration also up-regulated the expression of IL-4,INF-γ,TNF-α,T-bet and GATA-3 mRNA in small intestine.Furthermore,administration of REFB modulated gut microbiota composition and increased the relative abundance of beneficial genus,such as Bacteroides.It also increased the production of fecal short-chain fatty acids.These indicate that REFB has the potential to improve immunity,alleviate intestinal injury and regulate gut microbiota in immunosuppressed mice. 展开更多
关键词 Fermented foods Immunosuppressed mice Immune response gut microbiota Short-chain fatty acids
下载PDF
Association between childhood obesity and gut microbiota:16S rRNA gene sequencing-based cohort study 被引量:1
12
作者 Xu-Ming Li Qing Lv +2 位作者 Ya-Jun Chen Lu-Biao Yan Xin Xiong 《World Journal of Gastroenterology》 SCIE CAS 2024年第16期2249-2257,共9页
BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevent... BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children. 展开更多
关键词 Childhood obesity gut microbiota 16S rDNA sequencing Diversity analysis Genus identification Body mass index
下载PDF
More on the interplay between gut microbiota,autophagy,and inflammatory bowel disease is needed 被引量:1
13
作者 Arunkumar Subramanian Afrarahamed Jahabardeen +1 位作者 Tamilanban Thamaraikani Chitra Vellapandian 《World Journal of Gastroenterology》 SCIE CAS 2024年第27期3356-3360,共5页
The concept of inflammatory bowel disease(IBD),which encompasses Crohn’s disease and ulcerative colitis,represents a complex and growing global health concern resulting from a multifactorial etiology.Both dysfunction... The concept of inflammatory bowel disease(IBD),which encompasses Crohn’s disease and ulcerative colitis,represents a complex and growing global health concern resulting from a multifactorial etiology.Both dysfunctional autophagy and dysbiosis contribute to IBD,with their combined effects exacerbating the related inflammatory condition.As a result,the existing interconnection between gut microbiota,autophagy,and the host’s immune system is a decisive factor in the occurrence of IBD.The factors that influence the gut microbiota and their impact are another important point in this regard.Based on this initial perspective,this manuscript briefly highlighted the intricate interplay between the gut microbiota,autophagy,and IBD pathogenesis.In addition,it also addressed the potential targeting of the microbiota and modulating autophagic pathways for IBD therapy and proposed suggestions for future research within a more specific and expanded context.Further studies are warranted to explore restoring microbial balance and regulating autophagy mechanisms,which may offer new therapeutic avenues for IBD management and to delve into personalized treatment to alleviate the related burden. 展开更多
关键词 Inflammatory bowel disease gut microbiota AUTOPHAGY Crohn’s disease Ulcerative colitis
下载PDF
Adsorption,in vitro digestion and human gut microbiota regulation characteristics of three Poria cocos polysaccharides 被引量:1
14
作者 Fangming Zhang Hui Zheng +10 位作者 Tao Zheng Pan Xu Yao Xu Yuxin Cao Fan Jia Yiqiong Zeng Yubing Fan Kai He Xinwen Dai Fengfei Hou Yong Yang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1685-1697,共13页
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch... Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine. 展开更多
关键词 Poria cocos polysaccharides Alkali-soluble poria polysaccharide Carboxymethyl poria polysaccharide Adsorption characteristics In vitro simulated digestion In vitro simulated gut microbiota fermentation
下载PDF
Bringing gut microbiota into the spotlight of clinical research and medical practice 被引量:1
15
作者 Efstathia Davoutis Zoi Gkiafi Panagis M Lykoudis 《World Journal of Clinical Cases》 SCIE 2024年第14期2293-2300,共8页
Despite the increasing scientific interest and expanding role of gut microbiota(GM)in human health,it is rarely reported in case reports and deployed in cli-nical practice.Proteins and metabolites produced by microbio... Despite the increasing scientific interest and expanding role of gut microbiota(GM)in human health,it is rarely reported in case reports and deployed in cli-nical practice.Proteins and metabolites produced by microbiota contribute to im-mune system development,energy homeostasis and digestion.Exo-and endoge-nous factors can alter its composition.Disturbance of microbiota,also known as dysbiosis,is associated with various pathological conditions.Specific bacterial taxa and related metabolites are involved in disease pathogenesis and therefore can serve as a diagnostic tool.GM could also be a useful prognostic factor by predicting future disease onset and preventing hospital-associated infections.Ad-ditionally,it can influence response to treatments,including those for cancers,by altering drug bioavailability.A thorough understanding of its function has per-mitted significant development in therapeutics,such as probiotics and fecal trans-plantation.Hence,GM should be considered as a ground-breaking biological parameter,and it is advisable to be investigated and reported in literature in a more consistent and systematic way. 展开更多
关键词 gut microbiota BIOMARKER Fecal microbiota transplantation DYSBIOSIS PREBIOTICS
下载PDF
Advances in the treatment of diabetic peripheral neuropathy by modulating gut microbiota with traditional Chinese medicine 被引量:1
16
作者 Ye-Yao Li Rui-Qian Guan +2 位作者 Zhi-Bo Hong Yao-Lei Wang Li-Min Pan 《World Journal of Diabetes》 SCIE 2024年第8期1712-1716,共5页
Diabetic peripheral neuropathy(DPN)is one of the strongest risk factors for diabetic foot ulcers(neuropathic ulcerations)and the existing ulcers may further deteriorate due to the damage to sensory neurons.Moreover,th... Diabetic peripheral neuropathy(DPN)is one of the strongest risk factors for diabetic foot ulcers(neuropathic ulcerations)and the existing ulcers may further deteriorate due to the damage to sensory neurons.Moreover,the resulting numbness in the limbs causes difficulty in discovering these ulcerations in a short time.DPN is associated with gut microbiota dysbiosis.Traditional Chinese medicine(TCM)compounds such as Shenqi Dihuang Decoction,Huangkui Capsules and Qidi Tangshen Granules can reduce the clinical symptoms of diabetic nephropathy by modulating gut microbiota.The current review discusses whether TCM compounds can reduce the risk of DPN by improving gut microbiota. 展开更多
关键词 DIABETES Peripheral neuropathy Traditional Chinese medicine gut microbiota Diabetic foot ulcer TREATMENT
下载PDF
Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines
17
作者 Kaiqi Li Xiangyu Xiao +8 位作者 Yuling Li Sichen Lu Jianghang Zi Xiaoqiang Sun Jia Xu Hao‑Yu Liu Xiaoqiong Li Tongxing Song Demin Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期1761-1777,共17页
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart d... Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart disease and osteoarthritis in dogs and cats.A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated.However,the understanding of such pathophysiology in companion animals is lim-ited.This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity,emphasizing the involvement of the gut microbiota.Furthermore,we also discuss the management of obesity,including approaches like nutritional interventions,thus providing novel insights into obesity prevention and treatment for canines and felines. 展开更多
关键词 CAT DOG gut microbiota Lipid metabolism Obesity Management
下载PDF
Seasonal changes in gut microbiota of sea cucumber over natural aestivation cycle
18
作者 Ye ZHAO Han WANG +3 位作者 Haona WANG Lijie ZHANG Hao SUN Yanying ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期849-864,共16页
Sea cucumber Apostichopus japonicus is an ideal model organism for marine invertebrate aestivation;it annually enters a“sleeping state”for nearly 3 months when ambient water temperature range is 25–30℃.The natural... Sea cucumber Apostichopus japonicus is an ideal model organism for marine invertebrate aestivation;it annually enters a“sleeping state”for nearly 3 months when ambient water temperature range is 25–30℃.The natural fasting is accompanied by remodeling the intestinal biota and function,which is a part of host biology and could affect the gut microbiota.We investigatesd the impact of annual aestivation on gut microbiota using high-throughput sequencing of 16S rRNA amplicons.Results reveal a notable alteration in the composition of gut bacteria during aestivation during which various indigenous families and genera that exhibit a preference for dietary glycans(e.g.,family Rhodobacteraceae and Flavobacteriaceae)decreased,while the taxa capable of utilizing substrates derived from the host(e.g.,genus Akkermansia and Prevotella)increased,and so did certain opportunistic pathogenic bacteria.Moreover,the investigation delved into the gut morphology and immunity response of A.japonicus and reveal that the intestine of A.japonicus undergoes substantial atrophy and degeneration during aestivation.However,there was an observed augmentation in the levels of acid and neutral mucin within mucous cells,as well as an enhanced immune defense response(as evidenced by increased gene expression of AjTLR3,LITAF,Ajp105,and LYZ).These results imply that the composition of sea cucumber gut microbiota differed between aestivation and active periods,which potentially affects the intestinal functions of the host and the symbiotic relationship between host and its microbiota over the activeaestivation cycle. 展开更多
关键词 Apostichopus japonicus AESTIVATION gut microbiota DIET Illumina sequencing
下载PDF
Gut microbiota affects the estrus return of sows by regulating the metabolism of sex steroid hormones
19
作者 Min Liu Jia Zhang +11 位作者 Yunyan Zhou Shuqi Xiong Mengqing Zhou Lin Wu Qin Liu Zhe Chen Hui Jiang Jiawen Yang Yuxin Liu Yaxiang Wang Congying Chen Lusheng Huang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期578-599,共22页
Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the ext... Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.Results In this study,we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows.Using metagenomic sequencing data from 85 fecal samples,we identified 37 bacterial species that were significantly associated with estrus return.Normally returning sows were characterized by increased abundances of L.reuteri and P.copri and decreased abundances of B.fragilis,S.suis,and B.pseudolongum.The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome.The results were confirmed in a validation cohort.Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis.An integrated analysis of differential bacterial species,metagenome,and fecal metabolome provided evidence that normal return-associated bacterial species L.reuteri and Prevotella spp.participated in the degradation of pregnenolone,progesterone,and testosterone,thereby promoting estrogen biosynthesis.Furthermore,the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return.Conclusions An integrated analysis of differentially abundant bacterial species,metagenome,and fecal metabolome revealed the involvement of L.reuteri and Prevotella spp.in sow estrus return.These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones,suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning. 展开更多
关键词 Estrus return Fecal metabolome gut microbiota METAGENOMICS Sex steroid hormones SOW
下载PDF
Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5‑HT pathway
20
作者 Sheng Li Xiaoqing Li +3 位作者 Kai Wang Yansen Li Kentaro Nagaoka Chunmei Li 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期679-698,共20页
Background Broilers have a robust metabolism and high body temperature,which make them less tolerant to hightemperature(HT)environments and more susceptible to challenges from elevated temperatures.Gut microbes,functi... Background Broilers have a robust metabolism and high body temperature,which make them less tolerant to hightemperature(HT)environments and more susceptible to challenges from elevated temperatures.Gut microbes,functioning as symbionts within the host,possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host.This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures,as well as the underlying mechanism involving the"gut-brain"axis.Methods Broilers were subjected to gut microbiota interference with or without antibiotics(control or ABX)starting at 1 day of age.At 21 day of age,they were divided into 4 groups and exposed to different environments for 7 d:The control and ABX groups at room temperature(RT,24±1℃,60%relative humidity(RH),24 h/d)and the control-HT and ABX-HT groups at high temperature(HT,32±1℃,60%RH,24 h/d).Results The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens(P<0.05).Under HT conditions,the microbiota intervention reduced the rectal temperature of broiler chickens(P<0.05),inhibited the expression of avUCP and thermogenesisrelated genes in breast muscle and liver(P<0.05),and thus decreased thermogenesis capacity.Furthermore,the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic–pituitary–thyroid axis activation induced by HT conditions.By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions,we found that Alistipes was enriched in control chickens.In contrast,antibioticinduced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes(P<0.05).Moreover,this difference was accompanied by increased hypothalamic 5-hydroxytryptamine(5-HT)content and TPH2 expression(P<0.05).Conclusions These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers. 展开更多
关键词 5-HT Broiler chickens gut microbiota THERMOGENESIS THERMOREGULATION
下载PDF
上一页 1 2 223 下一页 到第
使用帮助 返回顶部