OBJECTIVE Aconitine(ACO)as the main active component in Aconitum carmichaelii debeaux(family Ranunlaceae),has highly toxicity in heart and the mechanisms are not clear yet.Paeoniflorin(PF),the main chemical ingredient...OBJECTIVE Aconitine(ACO)as the main active component in Aconitum carmichaelii debeaux(family Ranunlaceae),has highly toxicity in heart and the mechanisms are not clear yet.Paeoniflorin(PF),the main chemical ingredient in Herbaceous peony,can protect heart hurt by antioxidant,vasodilator effect and other effects.In this study,we focused on investigating the mechanism of PF reducing the cardiotoxicity of ACO.METHODS We chose H9c2 cells as experimental subject.MTT,Western blotting and real-time PCR were used to measure cell proliferation,apoptosis,ion channels and oxidative stress.RESULTS Cell proliferation in ACO+PF group was significantly increased compared with ACO group;the ratio with Bcl-2 and Bax and the level of p53 were upregulated by PF,while the level of caspase-3 was lightly reduced.The expression of SCN5A mRNA significantly was increased in ACO+PF group,while the expres⁃sion of RyR2 and Cx43 mRNA was dropped.Compared with ACO group,extracellular LDH and intracellular MDA were highly decreased,while intracellular SOD was regulated.CONCLUSION Cardiotoxicity of ACO in H9c2 cells was signifi⁃cantly decreased by PF.展开更多
In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose d...In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose deprivation/reperfusion model were established.Cells were divided into a control group,model group,hyperbaric air(HBA)group and HBO group.The cell viability was detected by the CCK8 assay.Hoechst 33342 and PI staining assays and mitochondrial membrane potential(MMP)assays were used to detect cell apoptosis.The ultrastructure of cells,including autophagosomes,lysosomes,and apoptosis,were examined using a transmission electron microscope.The expression of autophagy-related proteins was detected by cellular immunofluorescence and immunocytochemistry.Our results showed that HBO can significantly improve the vitality of damaged PC12 and H9C2 cells caused by oxygen–glucose deprivation/reperfusion.HBO can significantly inhibit apoptosis of PC12 and H9C2 cells caused by oxygenglucose deprivation/reperfusion.Importantly,we found that the protective mechanism of PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion may be related to the inhibition of the autophagy pathway.In this study,the results of cellular immunofluorescence and immunocytochemistry experiments showed that the 4E-BP1,p-AKt and mTOR levels of PC12 and H9C2 cells in the model group decreased,while the levels of LC3B,Atg5 and p53 increased.However,after HBO treatment,these autophagy-related indexes were reversed.In addition,observation of the cell ultrastructure with transmission electron microscopy found that in the model group,a significant increase in the number of autophagic vesicles was observed.In the HBO group,a decrease in autophagic vesicles was observed.The study demonstrated that hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy.展开更多
Objective: To study the effect of different doses of doxorubicin on H9C2 cells and to provide a reference for the clinical study of doxorubicin. Methods: Doxorubicin (1, 2, 4, 6, 10 ug/ml) was co-cultured with H9C2 ce...Objective: To study the effect of different doses of doxorubicin on H9C2 cells and to provide a reference for the clinical study of doxorubicin. Methods: Doxorubicin (1, 2, 4, 6, 10 ug/ml) was co-cultured with H9C2 cells for 6, 12 and 24 hours. The morphological changes of cells were observed, and the cell inhibition rates of different time and drug concentration were calculated. Results: Doxorubicin could inhibit the activity of cardiomyocytes in a dose-dependent manner from 1 to 10 ug/ml. Conclusion: A certain dose of doxorubicin has a toxic effect on cardiomyocytes and can cause cardiomyocyte necrosis and apoptosis.展开更多
Objective:To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline(TG)for reducing the H_2O_2induced toxicity in H9c2 cells.Methods:Cyto...Objective:To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline(TG)for reducing the H_2O_2induced toxicity in H9c2 cells.Methods:Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit.RNA extraction and cDNA synthesized according to the kit manufacture protocol.Apoptosis was measured by the Flowcytometry,general PCR and qPCR.Results:It was found that the TG significantly rescued the morphology of the H9c2 cells.Treatment of cells with TG attenuated H_2O_2 induced cell deaths and improved the antioxidant activity.In addition,TG regulated the apoptotic gene caspase-3,caspase-9 and anti-apoptotic gene Bcl-2.Bcl-XL during H_2O_2 induced oxidative stress in H9c2 cells.These results were comparable with quercetin treatment.For evident,flow cytometer results also confirmed the TG significantly reduced the H_2O_2 induced necrosis and apoptosis in H9c2 cells.However,further increment of TG concentration against H_2O_2 could induce the necrosis and apoptosis along with H_2O_2.Conclusions:It is suggested that less than 125μM of TG could protect the cells from H_2O_2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression.Therefore,we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.展开更多
OBJECTIVE Liguzinediol is a derivative of the natural active ingredient ligustrazine,and we found that liguzinediol has significant positive inotropic effects,which are stronger than that of TMP.Besides,it does not le...OBJECTIVE Liguzinediol is a derivative of the natural active ingredient ligustrazine,and we found that liguzinediol has significant positive inotropic effects,which are stronger than that of TMP.Besides,it does not lead to arrhythmia,hypotension and other side effects.This study aims to investigate the anti-apoptotic effects of liguzinediolon H9C2 cells.METHODS Apoptotic H9C2 cells induced by DOX were observed by electron microscope and FCM analysis.The protein expressions of Bax,Bcl-2,caspases 3 and NF-κB were detected by Western blotting.RESULTS Apoptotic H9C2 cells induced by DOX were observed,but without apoptotic bodies in liguzinediol group.Declined peak of H9C2 cell apoptosis was seen in liguzinediol group by FCM analysis.And downregulation of Bax,caspases 3,NF-κB and upregulation of Bcl-2 were found by Western blotting.CONCLUSION Liguzinediol protected cardiomyocytes against apoptosis through downregulation of Bax and caspases 3 and upregulation of Bcl-2.Liguzinediol can inhibited cardiomyocyte apoptosis through the NF-κB signal pathway.展开更多
Fine particulate matter(PM_(2.5))exposure is associated with cardiovascular disease(CVD)morbidity and mortality.Mitochondria are sensitive targets of PM_(2.5),and mitochondrial dysfunction is closely related to the oc...Fine particulate matter(PM_(2.5))exposure is associated with cardiovascular disease(CVD)morbidity and mortality.Mitochondria are sensitive targets of PM_(2.5),and mitochondrial dysfunction is closely related to the occurrence of CVD.The epigenetic mechanism of PM_(2.5)-triggered mitochondrial injury of cardiomyocytes is unclear.This study focused on the mi R-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance in rat H9c2 cells induced by PM_(2.5).Results illustrated that PM_(2.5)impaired mitochondrial function and caused dynamics homeostasis imbalance.Besides,PM_(2.5)up-regulated mi R-421 and down-regulated SIRT3 gene expression,along with decreasing p-FOXO3a(SIRT3 downstream target gene)and p-Parkin expression and triggering abnormal expression of fusion gene OPA1 and fission gene Drp1.Further,mi R-421 inhibitor(mi R-421i)and resveratrol significantly elevated the SIRT3 levels in H9c2 cells after PM_(2.5)exposure and mediated the expression of SOD2,OPA1 and Drp1,restoring the mitochondrial morphology and function.It suggests that mi R-421/SIRT3 pathway plays an epigenetic regulatory role in mitochondrial damage induced by PM_(2.5)and that mi R-421i and resveratrol exert protective effects against PM_(2.5)-incurred cardiotoxicity.展开更多
Pathological cardiac hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ ) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the r...Pathological cardiac hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ ) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots ofNardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on Ang Ⅱ-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosi- none (25, 50, 100, and 200μmol/L) or Ang Ⅱ (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by Ang Ⅱ. The mRNA expression of ANP, BNP and 13-MHC was obviously elevated in Ang Ⅱ-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang Ⅱ-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.展开更多
目的研究交趾黄檀Dalbergia cochinchinensis Pierre ex Laness的新黄酮类成分及其抗H9c2心肌细胞缺氧/复氧损伤活性。方法交趾黄檀70%乙醇提取物采用硅胶、Sephadex LH-20、反相制备HPLC进行分离纯化,根据理化性质及波谱数据鉴定所得...目的研究交趾黄檀Dalbergia cochinchinensis Pierre ex Laness的新黄酮类成分及其抗H9c2心肌细胞缺氧/复氧损伤活性。方法交趾黄檀70%乙醇提取物采用硅胶、Sephadex LH-20、反相制备HPLC进行分离纯化,根据理化性质及波谱数据鉴定所得化合物的结构。采用CCK-8法检测其对H9c2心肌细胞的活性及对H9c2细胞缺氧/复氧损伤的保护作用,并分析其构效关系。结果从中分离得到12个化合物,分别鉴定为阔叶黄檀酚(1)、5-O-methyllatifolin(2)、mimosifoliol(3)、5-O-methydalbergiphenol(4)、dalbergiphenol(5)、cearoin(6)、2,4-dihydroxy-5-methoxy-benzophenone(7)、2-hydroxy-4,5-dimethoxybenzophenone(8)、melannoin(9)、2,2′,5-trihydroxy-4-methoxybenzophenone(10)、黄檀素(11)、4-甲氧基黄檀醌(12)。黄檀酚及黄檀内酯类化合物对H9c2细胞毒性较小,黄檀酚类化合物抗H9c2心肌细胞缺氧/复氧损伤活性较强。结论化合物8为新天然产物,化合物4、9为首次从该植物中分离得到。黄檀酚类化合物可能是抗H9c2细胞缺氧/复氧损伤的主要新黄酮类成分。展开更多
Daji (Cirsium japonicum) has been applied against gastric disorders, lung diseases, and cardiovascular problems in thetraditional Chinese medicinal system. The present study was to investigate the protective effects...Daji (Cirsium japonicum) has been applied against gastric disorders, lung diseases, and cardiovascular problems in thetraditional Chinese medicinal system. The present study was to investigate the protective effects of Daji (Cirsiumjaponicum) polysaccharide extracts (CJP) against hydrogen peroxide (H2O2) shock in rat H9c2 myocardial cells. First,CJP was isolated by hot water extraction and ethanol precipitation; it was then characterized by high performance liquidchromatography and infrared spectrum analysis. Rat H9c2 cells were subjected to H2O2 treatment to establish a cellinjury model. The 3- (4,5- dimethylthiazol- 2-yl)-2,5- diphenyltetrazolium bromide assay showed that CJP pretreatmentsignificantly ameliorated the H2O2 injury in a dose-dependent manner. Furthermore, the cell apoptosis induced by H2O2was markedly inhibited by CJP pretreatment, whereas the cleavage level of caspase-3, -8, and -9 was reduced. Inaddition, the p38 mitogen-activated protein kinase pathway might be involved in the protective effect of CJP onmyocardial cells. Therefore, we conclude that polysaccharide extracts of Daji (Cirsium japonicum) protect rat H9c2myocardial cells from oxidative stress induced by H2O2.展开更多
目的:研究淫羊藿总黄酮(Total Flavonoids of Epimedium,TFE)对D-半乳糖诱导H9c2细胞衰老模型的影响及其机制。方法:采用不同浓度TFE干预D-半乳糖作用的H9c2细胞,以细胞形态学和β-半乳糖苷酶染色检验细胞衰老情况,并检测超氧化物歧化酶...目的:研究淫羊藿总黄酮(Total Flavonoids of Epimedium,TFE)对D-半乳糖诱导H9c2细胞衰老模型的影响及其机制。方法:采用不同浓度TFE干预D-半乳糖作用的H9c2细胞,以细胞形态学和β-半乳糖苷酶染色检验细胞衰老情况,并检测超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量、细胞内活性氧(ROS)水平以及细胞凋亡情况。结果:各浓度TFE均能显著降低D-半乳糖所致的β-半乳糖苷酶染色阳性的细胞数目、MDA含量及ROS荧光强度,并能升高SOD活性,改善细胞核染色质浓缩及减少凋亡小体。结论:TFE可通过抗氧化和减少细胞早期凋亡来对抗D-半乳糖所致H9c2细胞衰老。展开更多
文摘OBJECTIVE Aconitine(ACO)as the main active component in Aconitum carmichaelii debeaux(family Ranunlaceae),has highly toxicity in heart and the mechanisms are not clear yet.Paeoniflorin(PF),the main chemical ingredient in Herbaceous peony,can protect heart hurt by antioxidant,vasodilator effect and other effects.In this study,we focused on investigating the mechanism of PF reducing the cardiotoxicity of ACO.METHODS We chose H9c2 cells as experimental subject.MTT,Western blotting and real-time PCR were used to measure cell proliferation,apoptosis,ion channels and oxidative stress.RESULTS Cell proliferation in ACO+PF group was significantly increased compared with ACO group;the ratio with Bcl-2 and Bax and the level of p53 were upregulated by PF,while the level of caspase-3 was lightly reduced.The expression of SCN5A mRNA significantly was increased in ACO+PF group,while the expres⁃sion of RyR2 and Cx43 mRNA was dropped.Compared with ACO group,extracellular LDH and intracellular MDA were highly decreased,while intracellular SOD was regulated.CONCLUSION Cardiotoxicity of ACO in H9c2 cells was signifi⁃cantly decreased by PF.
基金supported by the National Natural Science Foundation of China(81960246,81701089,81560044 and 30860113)the Guangxi Natural Science Foundation(2020GXNSFAA238003 and 2017GXNSFBA198010)+1 种基金the Guangxi Medical and Health Appropriate Technology Research and Development Project(S2020076,S201422-01 and S2019087)the Shanxi Health Research Project(2019165).
文摘In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose deprivation/reperfusion model were established.Cells were divided into a control group,model group,hyperbaric air(HBA)group and HBO group.The cell viability was detected by the CCK8 assay.Hoechst 33342 and PI staining assays and mitochondrial membrane potential(MMP)assays were used to detect cell apoptosis.The ultrastructure of cells,including autophagosomes,lysosomes,and apoptosis,were examined using a transmission electron microscope.The expression of autophagy-related proteins was detected by cellular immunofluorescence and immunocytochemistry.Our results showed that HBO can significantly improve the vitality of damaged PC12 and H9C2 cells caused by oxygen–glucose deprivation/reperfusion.HBO can significantly inhibit apoptosis of PC12 and H9C2 cells caused by oxygenglucose deprivation/reperfusion.Importantly,we found that the protective mechanism of PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion may be related to the inhibition of the autophagy pathway.In this study,the results of cellular immunofluorescence and immunocytochemistry experiments showed that the 4E-BP1,p-AKt and mTOR levels of PC12 and H9C2 cells in the model group decreased,while the levels of LC3B,Atg5 and p53 increased.However,after HBO treatment,these autophagy-related indexes were reversed.In addition,observation of the cell ultrastructure with transmission electron microscopy found that in the model group,a significant increase in the number of autophagic vesicles was observed.In the HBO group,a decrease in autophagic vesicles was observed.The study demonstrated that hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy.
文摘Objective: To study the effect of different doses of doxorubicin on H9C2 cells and to provide a reference for the clinical study of doxorubicin. Methods: Doxorubicin (1, 2, 4, 6, 10 ug/ml) was co-cultured with H9C2 cells for 6, 12 and 24 hours. The morphological changes of cells were observed, and the cell inhibition rates of different time and drug concentration were calculated. Results: Doxorubicin could inhibit the activity of cardiomyocytes in a dose-dependent manner from 1 to 10 ug/ml. Conclusion: A certain dose of doxorubicin has a toxic effect on cardiomyocytes and can cause cardiomyocyte necrosis and apoptosis.
文摘Objective:To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline(TG)for reducing the H_2O_2induced toxicity in H9c2 cells.Methods:Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit.RNA extraction and cDNA synthesized according to the kit manufacture protocol.Apoptosis was measured by the Flowcytometry,general PCR and qPCR.Results:It was found that the TG significantly rescued the morphology of the H9c2 cells.Treatment of cells with TG attenuated H_2O_2 induced cell deaths and improved the antioxidant activity.In addition,TG regulated the apoptotic gene caspase-3,caspase-9 and anti-apoptotic gene Bcl-2.Bcl-XL during H_2O_2 induced oxidative stress in H9c2 cells.These results were comparable with quercetin treatment.For evident,flow cytometer results also confirmed the TG significantly reduced the H_2O_2 induced necrosis and apoptosis in H9c2 cells.However,further increment of TG concentration against H_2O_2 could induce the necrosis and apoptosis along with H_2O_2.Conclusions:It is suggested that less than 125μM of TG could protect the cells from H_2O_2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression.Therefore,we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.
基金The project supported by the National Natural Science Foundation of China(81072542)Natural Science Foundation of Jiangsu Province(BK2011077)the Research Fund for the Doctoral Program of Higher Education(20123237110010)
文摘OBJECTIVE Liguzinediol is a derivative of the natural active ingredient ligustrazine,and we found that liguzinediol has significant positive inotropic effects,which are stronger than that of TMP.Besides,it does not lead to arrhythmia,hypotension and other side effects.This study aims to investigate the anti-apoptotic effects of liguzinediolon H9C2 cells.METHODS Apoptotic H9C2 cells induced by DOX were observed by electron microscope and FCM analysis.The protein expressions of Bax,Bcl-2,caspases 3 and NF-κB were detected by Western blotting.RESULTS Apoptotic H9C2 cells induced by DOX were observed,but without apoptotic bodies in liguzinediol group.Declined peak of H9C2 cell apoptosis was seen in liguzinediol group by FCM analysis.And downregulation of Bax,caspases 3,NF-κB and upregulation of Bcl-2 were found by Western blotting.CONCLUSION Liguzinediol protected cardiomyocytes against apoptosis through downregulation of Bax and caspases 3 and upregulation of Bcl-2.Liguzinediol can inhibited cardiomyocyte apoptosis through the NF-κB signal pathway.
基金supported by the National Natural Science Foundation of China(No.22176116)the Natural Science Foundation of Shanxi Province in China(No.201801D121260)the Hundred Talents Program of Shanxi Province in China(2017-7)。
文摘Fine particulate matter(PM_(2.5))exposure is associated with cardiovascular disease(CVD)morbidity and mortality.Mitochondria are sensitive targets of PM_(2.5),and mitochondrial dysfunction is closely related to the occurrence of CVD.The epigenetic mechanism of PM_(2.5)-triggered mitochondrial injury of cardiomyocytes is unclear.This study focused on the mi R-421/SIRT3 signaling pathway to investigate the regulatory mechanism in cardiac mitochondrial dynamics imbalance in rat H9c2 cells induced by PM_(2.5).Results illustrated that PM_(2.5)impaired mitochondrial function and caused dynamics homeostasis imbalance.Besides,PM_(2.5)up-regulated mi R-421 and down-regulated SIRT3 gene expression,along with decreasing p-FOXO3a(SIRT3 downstream target gene)and p-Parkin expression and triggering abnormal expression of fusion gene OPA1 and fission gene Drp1.Further,mi R-421 inhibitor(mi R-421i)and resveratrol significantly elevated the SIRT3 levels in H9c2 cells after PM_(2.5)exposure and mediated the expression of SOD2,OPA1 and Drp1,restoring the mitochondrial morphology and function.It suggests that mi R-421/SIRT3 pathway plays an epigenetic regulatory role in mitochondrial damage induced by PM_(2.5)and that mi R-421i and resveratrol exert protective effects against PM_(2.5)-incurred cardiotoxicity.
基金supported by the grants from the National Natural Science Foundation of China(No.30971245 and No.81000112)
文摘Pathological cardiac hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ ) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots ofNardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on Ang Ⅱ-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosi- none (25, 50, 100, and 200μmol/L) or Ang Ⅱ (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by Ang Ⅱ. The mRNA expression of ANP, BNP and 13-MHC was obviously elevated in Ang Ⅱ-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang Ⅱ-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.
文摘目的研究交趾黄檀Dalbergia cochinchinensis Pierre ex Laness的新黄酮类成分及其抗H9c2心肌细胞缺氧/复氧损伤活性。方法交趾黄檀70%乙醇提取物采用硅胶、Sephadex LH-20、反相制备HPLC进行分离纯化,根据理化性质及波谱数据鉴定所得化合物的结构。采用CCK-8法检测其对H9c2心肌细胞的活性及对H9c2细胞缺氧/复氧损伤的保护作用,并分析其构效关系。结果从中分离得到12个化合物,分别鉴定为阔叶黄檀酚(1)、5-O-methyllatifolin(2)、mimosifoliol(3)、5-O-methydalbergiphenol(4)、dalbergiphenol(5)、cearoin(6)、2,4-dihydroxy-5-methoxy-benzophenone(7)、2-hydroxy-4,5-dimethoxybenzophenone(8)、melannoin(9)、2,2′,5-trihydroxy-4-methoxybenzophenone(10)、黄檀素(11)、4-甲氧基黄檀醌(12)。黄檀酚及黄檀内酯类化合物对H9c2细胞毒性较小,黄檀酚类化合物抗H9c2心肌细胞缺氧/复氧损伤活性较强。结论化合物8为新天然产物,化合物4、9为首次从该植物中分离得到。黄檀酚类化合物可能是抗H9c2细胞缺氧/复氧损伤的主要新黄酮类成分。
文摘Daji (Cirsium japonicum) has been applied against gastric disorders, lung diseases, and cardiovascular problems in thetraditional Chinese medicinal system. The present study was to investigate the protective effects of Daji (Cirsiumjaponicum) polysaccharide extracts (CJP) against hydrogen peroxide (H2O2) shock in rat H9c2 myocardial cells. First,CJP was isolated by hot water extraction and ethanol precipitation; it was then characterized by high performance liquidchromatography and infrared spectrum analysis. Rat H9c2 cells were subjected to H2O2 treatment to establish a cellinjury model. The 3- (4,5- dimethylthiazol- 2-yl)-2,5- diphenyltetrazolium bromide assay showed that CJP pretreatmentsignificantly ameliorated the H2O2 injury in a dose-dependent manner. Furthermore, the cell apoptosis induced by H2O2was markedly inhibited by CJP pretreatment, whereas the cleavage level of caspase-3, -8, and -9 was reduced. Inaddition, the p38 mitogen-activated protein kinase pathway might be involved in the protective effect of CJP onmyocardial cells. Therefore, we conclude that polysaccharide extracts of Daji (Cirsium japonicum) protect rat H9c2myocardial cells from oxidative stress induced by H2O2.
文摘目的:研究淫羊藿总黄酮(Total Flavonoids of Epimedium,TFE)对D-半乳糖诱导H9c2细胞衰老模型的影响及其机制。方法:采用不同浓度TFE干预D-半乳糖作用的H9c2细胞,以细胞形态学和β-半乳糖苷酶染色检验细胞衰老情况,并检测超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量、细胞内活性氧(ROS)水平以及细胞凋亡情况。结果:各浓度TFE均能显著降低D-半乳糖所致的β-半乳糖苷酶染色阳性的细胞数目、MDA含量及ROS荧光强度,并能升高SOD活性,改善细胞核染色质浓缩及减少凋亡小体。结论:TFE可通过抗氧化和减少细胞早期凋亡来对抗D-半乳糖所致H9c2细胞衰老。