为探究HCl对费托合成钴基催化剂的中毒机制,采用HSC Chemistry 5.0软件对200℃~350℃范围内钴基催化剂HCl中毒热力学进行模拟计算。结果表明:钴基催化剂与HCl单独存在或与CO共存会引起中毒,其中毒产物以CoCl2为主;费托合成钴基催化剂中,...为探究HCl对费托合成钴基催化剂的中毒机制,采用HSC Chemistry 5.0软件对200℃~350℃范围内钴基催化剂HCl中毒热力学进行模拟计算。结果表明:钴基催化剂与HCl单独存在或与CO共存会引起中毒,其中毒产物以CoCl2为主;费托合成钴基催化剂中,HCl不会对载体SiO2产生影响。In order to investigate the poisoning mechanism of HCl on cobalt-based catalysts for Fischer-Tropsch synthesis, the thermodynamics of HCl poisoning of cobalt-based catalysts in the temperature range of 200˚C~350˚C was simulated by using HSC Chemistry 5.0 software. The results showed that coexistence of cobalt-based catalysts with HCl alone or with CO would be poisoned, and its toxic product was dominated by CoCl2;HCl would not affect SiO2 in Fischer-Tropsch synthesised cobalt-based catalysts.展开更多
文摘为探究HCl对费托合成钴基催化剂的中毒机制,采用HSC Chemistry 5.0软件对200℃~350℃范围内钴基催化剂HCl中毒热力学进行模拟计算。结果表明:钴基催化剂与HCl单独存在或与CO共存会引起中毒,其中毒产物以CoCl2为主;费托合成钴基催化剂中,HCl不会对载体SiO2产生影响。In order to investigate the poisoning mechanism of HCl on cobalt-based catalysts for Fischer-Tropsch synthesis, the thermodynamics of HCl poisoning of cobalt-based catalysts in the temperature range of 200˚C~350˚C was simulated by using HSC Chemistry 5.0 software. The results showed that coexistence of cobalt-based catalysts with HCl alone or with CO would be poisoned, and its toxic product was dominated by CoCl2;HCl would not affect SiO2 in Fischer-Tropsch synthesised cobalt-based catalysts.