The passport option is a call option on the balance of a trading account. The option holder retains the gain from trading, while the issuer is liable for the net loss. In this article, the mathematical foundation for ...The passport option is a call option on the balance of a trading account. The option holder retains the gain from trading, while the issuer is liable for the net loss. In this article, the mathematical foundation for pricing the European passport option is established. The pricing equation which is a fully nonlinear equation is derived using the dynamic programming principle. The comparison principle, uniqueness and convexity preserving of the viscosity solutions of related H J13 equation are proved. A relationship between the passport and lookback options is discussed.展开更多
Abstract--In this paper, a new iterative method is proposed to solve the generalized Hamilton-Jacobi-Bellman (GHJB) equation through successively approximate it. Firstly, the GHJB equation is converted to an algebra...Abstract--In this paper, a new iterative method is proposed to solve the generalized Hamilton-Jacobi-Bellman (GHJB) equation through successively approximate it. Firstly, the GHJB equation is converted to an algebraic equation with the vector norm, which is essentially a set of simultaneous nonlinear equations in the case of dynamic systems. Then, the proposed algorithm solves GHJB equation numerically for points near the origin by considering the linearization of the non-linear equations under a good initial control guess. Finally, the procedure is proved to converge to the optimal stabilizing solution with respect to the iteration variable. In addition, it is shown that the result is a closed-loop control based on this iterative approach. Illustrative examples show that the update control laws will converge to optimal control for nonlinear systems. Index Terms--Generalized Hamilton-Jacobi-Bellman (HJB) equation, iterative method, nonlinear dynamic system, optimal control.展开更多
The article introduces proportional reinsurance contracts under the mean-variance criterion,studying the time-consistence investment portfolio problem considering the interests of both insurance companies and reinsura...The article introduces proportional reinsurance contracts under the mean-variance criterion,studying the time-consistence investment portfolio problem considering the interests of both insurance companies and reinsurance companies.The insurance claims process follows a jump-diffusion model,assuming that the risk asset prices of insurance companies and reinsurance companies follow CEV models different from each other.In the framework of game theory,the time-consistent equilibrium reinsurance strategy is obtained by solving the extended HJB equation analytically.Finally,numerical examples are used to illustrate the impact of model parameters on equilibrium strategies and provide economic explanations.The results indicate that the decision weights of insurance companies and reinsurance companies do have a significant impact on both the reinsurance ratio and the equilibrium reinsurance strategy.展开更多
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge t...This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.展开更多
This article is concerned with a class of control systems with Markovian switching, in which an It5 formula for Markov-modulated processes is derived. Moreover, an optimal control law satisfying the generalized Hamilt...This article is concerned with a class of control systems with Markovian switching, in which an It5 formula for Markov-modulated processes is derived. Moreover, an optimal control law satisfying the generalized Hamilton-Jacobi-Bellman (HJB) equation with Markovian switching is characterized. Then, through the generalized HJB equation, we study an optimal consumption and portfolio problem with the financial markets of Markovian switching and inflation. Thus, we deduce the optimal policies and show that a modified Mutual Fund Theorem consisting of three funds holds. Finally, for the CRRA utility function, we explicitly give the optimal consumption and portfolio policies. Numerical examples are included to illustrate the obtained results.展开更多
In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injec...In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, and the penalized discounted both capital injections and ruin penalty during the horizon, which is described by the minimum of the time of ruin and an exponential random variable. The explicit solutions for optimal strategy and value function are obtained, when the income jumps follow a hyper-exponential distribution.Besides, some numerical examples are presented to illustrate our results.展开更多
This paper considers a model of an insurance company which is allowed to invest a risky asset and to purchase proportional reinsurance. The objective is to find the policy which maximizes the expected total discounted...This paper considers a model of an insurance company which is allowed to invest a risky asset and to purchase proportional reinsurance. The objective is to find the policy which maximizes the expected total discounted dividend pay-out until the time of bankruptcy and the terminal value of the company under liquidity constraint. We find the solution of this problem via solving the problem with zero terminal value. We also analyze the influence of terminal value on the optimal policy.展开更多
In this article, the authors consider the optimal portfolio on tracking the expected wealth process with liquidity constraints. The constrained optimal portfolio is first formulated as minimizing the cumulate variance...In this article, the authors consider the optimal portfolio on tracking the expected wealth process with liquidity constraints. The constrained optimal portfolio is first formulated as minimizing the cumulate variance between the wealth process and the expected wealth process. Then, the dynamic programming methodology is applied to reduce the whole problem to solving the Hamilton-Jacobi--Bellman equation coupled with the liquidity constraint, and the method of Lagrange multiplier is applied to handle the constraint. Finally, a numerical method is proposed to solve the constrained HJB equation and the constrained optimal strategy. Especially, the explicit solution to this optimal problem is derived when there is no liquidity constraint.展开更多
Based on the contents Of part (Ⅰ) and stochastic optimal control theory, the concept of optimal control solution to parameters identification of stochastic dynamic system is discussed at first. For the completeness o...Based on the contents Of part (Ⅰ) and stochastic optimal control theory, the concept of optimal control solution to parameters identification of stochastic dynamic system is discussed at first. For the completeness of the theory developed in this paper and part (Ⅰ), then the procedure of establishing HamiltonJacobi-Bellman (HJB) equations of parameters identification problem is presented.And then, parameters identification algorithm of stochastic dynamic system is introduced. At last, an application example-local nonlinear parameters identification of dynamic system is presented.展开更多
In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and...In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.展开更多
The asymmetric input-constrained optimal synchronization problem of heterogeneous unknown nonlinear multiagent systems(MASs)is considered in the paper.Intuitively,a state-space transformation is performed such that sa...The asymmetric input-constrained optimal synchronization problem of heterogeneous unknown nonlinear multiagent systems(MASs)is considered in the paper.Intuitively,a state-space transformation is performed such that satisfaction of symmetric input constraints for the transformed system guarantees satisfaction of asymmetric input constraints for the original system.Then,considering that the leader’s information is not available to every follower,a novel distributed observer is designed to estimate the leader’s state using only exchange of information among neighboring followers.After that,a network of augmented systems is constructed by combining observers and followers dynamics.A nonquadratic cost function is then leveraged for each augmented system(agent)for which its optimization satisfies input constraints and its corresponding constrained Hamilton-Jacobi-Bellman(HJB)equation is solved in a data-based fashion.More specifically,a data-based off-policy reinforcement learning(RL)algorithm is presented to learn the solution to the constrained HJB equation without requiring the complete knowledge of the agents’dynamics.Convergence of the improved RL algorithm to the solution to the constrained HJB equation is also demonstrated.Finally,the correctness and validity of the theoretical results are demonstrated by a simulation example.展开更多
This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled...This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.展开更多
Certain Merton type consumption−investment problems under partial information are reduced to the ones of full information and within the framework of a complete market model.Then,specializing to conditionally log−Gaus...Certain Merton type consumption−investment problems under partial information are reduced to the ones of full information and within the framework of a complete market model.Then,specializing to conditionally log−Gaussian diffusion models,concrete analysis about the optimal values and optimal strategies is performed by using analytical tools like Feynman−Kac formula,or HJB equations.The explicit solutions to the related forward-backward equations are also given.展开更多
This paper studies the optimization problem with both investment and proportional reinsurance control under the assumption that the surplus process of an insurance entity is represented by a pure diffusion process.The...This paper studies the optimization problem with both investment and proportional reinsurance control under the assumption that the surplus process of an insurance entity is represented by a pure diffusion process.The company can buy proportional reinsurance and invest its surplus into a Black-Scholes risky asset and a risk free asset without restrictions.The authors define absolute ruin as that the liminf of the surplus process is negative infinity and propose absolute ruin minimization as the optimization scenario.Applying the HJB method the authors obtain explicit expressions for the minimal absolute ruin function and the associated optimal investment strategy.The authors find that the minimal absolute ruin function here is convex,but not S-shaped investigated by Luo and Taksar(2011).And finally,from behavioral finance point of view,the authors come to the conclusion:It is the restrictions on investment that results in the kink of minimal absolute ruin function.展开更多
This paper considers the optimal investment strategy for an insurer under the criterion of mean-variance. The risk process is a compound Poisson process and the insurer can invest in a risk-free asset and multiple ris...This paper considers the optimal investment strategy for an insurer under the criterion of mean-variance. The risk process is a compound Poisson process and the insurer can invest in a risk-free asset and multiple risky assets. This paper obtains the optimal investment policy using the stochastic linear quadratic (LQ) control theory with no-shorting constraint. Then the efficient strategy (optimal investment strategy) and efficient frontier are derived explicitly by a verification theorem with the viscosity solution of Hamilton-Jacobi-Bellman (HJB) equation.展开更多
Under the Knightian uncertainty,this paper constructs the optimal principal(he)-agent(she)contract model based on the principal’s expected profit and the agent’s expected utility function by using the sublinear expe...Under the Knightian uncertainty,this paper constructs the optimal principal(he)-agent(she)contract model based on the principal’s expected profit and the agent’s expected utility function by using the sublinear expectation theory.The output process in the model is provided by the agent’s continuous efforts and the principal cannot directly observe the agent’s efforts.In the process of work,risk-averse agent will have the opportunity to make external choices.In order to promote the agent’s continuous efforts,the principal will continuously provide the agents with consumption according to the observable output process after the probation period.In this paper,the Hamilton–Jacobi–Bellman equation is deduced by using the optimality principle under sublinear expectation while the smoothness viscosity condition of the principal-agent optimal contract is given.Moreover,the continuation value of the agent is taken as the state variable to characterize the optimal expected profit of the principal,the agent’s effort and the consumption level under different degrees of Knightian uncertainty.Finally,the behavioral economics is used to analyze the simulation results.The research findings are that the increasing Knightian uncertainty incurs the decline of the principal’s maximum profit;within the probation period,the increasing Knightian uncertainty leads to the shortening of probation period and makes the agent give higher effort when she faces the outside option;what’s more,after the smooth completion of the probation period for the agent,the agent’s consumption level will rise and her effort level will drop as Knightian uncertainty increasing.展开更多
A pricing model for a corporate bond with rating migration risk is established in this article. With the technology of utility-indifference valuation under the Markov-modulated framework, we analyze the price of a mul...A pricing model for a corporate bond with rating migration risk is established in this article. With the technology of utility-indifference valuation under the Markov-modulated framework, we analyze the price of a multi-rating bond and obtain closed formulae in a three-rating case. Based on the pricing formulae, the impacts of the parameters on the indifference price are analyzed and some reasonable financial explanations are provided as well.展开更多
This paper considers the Merton portfolio optimization problem for an investor that aims at maximizing the expected power utility of the terminal wealth and intermediate consumption.Applying the homotopy analysis meth...This paper considers the Merton portfolio optimization problem for an investor that aims at maximizing the expected power utility of the terminal wealth and intermediate consumption.Applying the homotopy analysis method,an analytical solution for value function as well as optimal strategy under the 3/2 model is derived,respectively.Compared with the existing explicit solutions for Merton problem under the 3/2 model,the formulas provide certain parameters with less requirement since the homotopy analysis method does not depend on the existence of small parameters in the equation.Finally,numerical examples are examined with the approach,and the proposed solution provides more accurate approximation as the number of terms in infinite series increases.展开更多
This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the c...This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the case of investment in a Black-Scholes market with risky asset such as stock. The classical problem is to find the optimal dividend payment strategy that maximizes the expectation of discounted dividend payment until ruin. Motivated by the idea of Thonhauser and Albrecher (2007), we take the lifetime of the controlled risk process into account, that is, the value function considers both the expectation of discounted dividend payment and the time value of ruin. The authors conclude that the optimal dividend strategy is a barrier strategy for the unbounded dividend payment case and is of threshold type for the bounded dividend payment case.展开更多
The paper presents a numerical method for solving a class of high-dimensional stochastic control systems based on tensor decomposition and parallel computing.The HJB solution provides a globally optimal controller to ...The paper presents a numerical method for solving a class of high-dimensional stochastic control systems based on tensor decomposition and parallel computing.The HJB solution provides a globally optimal controller to the associated dynamical system.Variable substitution is used to simplify the nonlinear HJB equation.The curse of dimensionality is avoided by representing the HJB equation using separated representation.Alternating least squares(ALS)is used to reduced the separation rank.The experiment is conducted and the numerical solution is obtained.A high-performance algorithm is designed to reduce the separation rank in the parallel environment,solving the high-dimensional HJB equation with high efficiency.展开更多
基金supported in partby National Science Foundation of China (10371088,10671144)National Basic Research Program of China(2007CB814903)+3 种基金Development Funds of Shanghai Higher Education (05D210)the Special Funds for Major Specialties of Shanghai Education Committee (T0401)Supported by Special Fund for the Excellent Young Teachers of Shanghai Higher Learning Institutions (ssd08029)the Research Program of Shanghai Normal University (SK200812)
文摘The passport option is a call option on the balance of a trading account. The option holder retains the gain from trading, while the issuer is liable for the net loss. In this article, the mathematical foundation for pricing the European passport option is established. The pricing equation which is a fully nonlinear equation is derived using the dynamic programming principle. The comparison principle, uniqueness and convexity preserving of the viscosity solutions of related H J13 equation are proved. A relationship between the passport and lookback options is discussed.
基金supported by the National Natural Science Foundation of China(U1601202,U1134004,91648108)the Natural Science Foundation of Guangdong Province(2015A030313497,2015A030312008)the Project of Science and Technology of Guangdong Province(2015B010102014,2015B010124001,2015B010104006,2018A030313505)
文摘Abstract--In this paper, a new iterative method is proposed to solve the generalized Hamilton-Jacobi-Bellman (GHJB) equation through successively approximate it. Firstly, the GHJB equation is converted to an algebraic equation with the vector norm, which is essentially a set of simultaneous nonlinear equations in the case of dynamic systems. Then, the proposed algorithm solves GHJB equation numerically for points near the origin by considering the linearization of the non-linear equations under a good initial control guess. Finally, the procedure is proved to converge to the optimal stabilizing solution with respect to the iteration variable. In addition, it is shown that the result is a closed-loop control based on this iterative approach. Illustrative examples show that the update control laws will converge to optimal control for nonlinear systems. Index Terms--Generalized Hamilton-Jacobi-Bellman (HJB) equation, iterative method, nonlinear dynamic system, optimal control.
文摘The article introduces proportional reinsurance contracts under the mean-variance criterion,studying the time-consistence investment portfolio problem considering the interests of both insurance companies and reinsurance companies.The insurance claims process follows a jump-diffusion model,assuming that the risk asset prices of insurance companies and reinsurance companies follow CEV models different from each other.In the framework of game theory,the time-consistent equilibrium reinsurance strategy is obtained by solving the extended HJB equation analytically.Finally,numerical examples are used to illustrate the impact of model parameters on equilibrium strategies and provide economic explanations.The results indicate that the decision weights of insurance companies and reinsurance companies do have a significant impact on both the reinsurance ratio and the equilibrium reinsurance strategy.
基金the National Key Research and Development Program of China(2021ZD0112302)the National Natural Science Foundation of China(62222301,61890930-5,62021003)the Beijing Natural Science Foundation(JQ19013).
文摘This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.
基金supported by National Natural Science Foundation of China(71171003)Anhui Natural Science Foundation(10040606003)Anhui Natural Science Foundation of Universities(KJ2012B019,KJ2013B023)
文摘This article is concerned with a class of control systems with Markovian switching, in which an It5 formula for Markov-modulated processes is derived. Moreover, an optimal control law satisfying the generalized Hamilton-Jacobi-Bellman (HJB) equation with Markovian switching is characterized. Then, through the generalized HJB equation, we study an optimal consumption and portfolio problem with the financial markets of Markovian switching and inflation. Thus, we deduce the optimal policies and show that a modified Mutual Fund Theorem consisting of three funds holds. Finally, for the CRRA utility function, we explicitly give the optimal consumption and portfolio policies. Numerical examples are included to illustrate the obtained results.
基金Supported by the National Natural Science Foundation of China(11231005)Promotive research fund for excellent young and middle-aged scientists of Shandong Province(BS2014SF006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(15KJB110009)
文摘In the dual risk model, we consider the optimal dividend and capital injection problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, and the penalized discounted both capital injections and ruin penalty during the horizon, which is described by the minimum of the time of ruin and an exponential random variable. The explicit solutions for optimal strategy and value function are obtained, when the income jumps follow a hyper-exponential distribution.Besides, some numerical examples are presented to illustrate our results.
基金Supported by Doctor Foundation of Xinjiang Universitythe National Natural Science Foundation of China
文摘This paper considers a model of an insurance company which is allowed to invest a risky asset and to purchase proportional reinsurance. The objective is to find the policy which maximizes the expected total discounted dividend pay-out until the time of bankruptcy and the terminal value of the company under liquidity constraint. We find the solution of this problem via solving the problem with zero terminal value. We also analyze the influence of terminal value on the optimal policy.
基金Supported in part by the National Natural ScienceFoundation of China (10671149)the Ministry of Education of China (NCET-04-0667)
文摘In this article, the authors consider the optimal portfolio on tracking the expected wealth process with liquidity constraints. The constrained optimal portfolio is first formulated as minimizing the cumulate variance between the wealth process and the expected wealth process. Then, the dynamic programming methodology is applied to reduce the whole problem to solving the Hamilton-Jacobi--Bellman equation coupled with the liquidity constraint, and the method of Lagrange multiplier is applied to handle the constraint. Finally, a numerical method is proposed to solve the constrained HJB equation and the constrained optimal strategy. Especially, the explicit solution to this optimal problem is derived when there is no liquidity constraint.
文摘Based on the contents Of part (Ⅰ) and stochastic optimal control theory, the concept of optimal control solution to parameters identification of stochastic dynamic system is discussed at first. For the completeness of the theory developed in this paper and part (Ⅰ), then the procedure of establishing HamiltonJacobi-Bellman (HJB) equations of parameters identification problem is presented.And then, parameters identification algorithm of stochastic dynamic system is introduced. At last, an application example-local nonlinear parameters identification of dynamic system is presented.
基金Supported by the Humanity and Social Science Foundation of Ministry of Education of China(10YJC790296)Supported by the National Natural Science Foundation of China(71073020)
文摘In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.
基金supported in part by the National Natural Science Foundation of China(61873300,61722312)the Fundamental Research Funds for the Central Universities(FRF-MP-20-11)Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing(Fundamental Research Funds for the Central Universities)(FRFIDRY-20-030)。
文摘The asymmetric input-constrained optimal synchronization problem of heterogeneous unknown nonlinear multiagent systems(MASs)is considered in the paper.Intuitively,a state-space transformation is performed such that satisfaction of symmetric input constraints for the transformed system guarantees satisfaction of asymmetric input constraints for the original system.Then,considering that the leader’s information is not available to every follower,a novel distributed observer is designed to estimate the leader’s state using only exchange of information among neighboring followers.After that,a network of augmented systems is constructed by combining observers and followers dynamics.A nonquadratic cost function is then leveraged for each augmented system(agent)for which its optimization satisfies input constraints and its corresponding constrained Hamilton-Jacobi-Bellman(HJB)equation is solved in a data-based fashion.More specifically,a data-based off-policy reinforcement learning(RL)algorithm is presented to learn the solution to the constrained HJB equation without requiring the complete knowledge of the agents’dynamics.Convergence of the improved RL algorithm to the solution to the constrained HJB equation is also demonstrated.Finally,the correctness and validity of the theoretical results are demonstrated by a simulation example.
基金supported by the National Natural Science Foundation of China under Grant Nos.11171187,11222110Shandong Province under Grant No.JQ201202+1 种基金Program for New Century Excellent Talents in University under Grant No.NCET-12-0331111 Project under Grant No.B12023
文摘This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.
文摘Certain Merton type consumption−investment problems under partial information are reduced to the ones of full information and within the framework of a complete market model.Then,specializing to conditionally log−Gaussian diffusion models,concrete analysis about the optimal values and optimal strategies is performed by using analytical tools like Feynman−Kac formula,or HJB equations.The explicit solutions to the related forward-backward equations are also given.
基金supported by the National Natural Science Foundation for Young Scholars of China under Grant No.11401556the National Natural Science Foundation of China under Grant Nos.11471304 and 11171321
文摘This paper studies the optimization problem with both investment and proportional reinsurance control under the assumption that the surplus process of an insurance entity is represented by a pure diffusion process.The company can buy proportional reinsurance and invest its surplus into a Black-Scholes risky asset and a risk free asset without restrictions.The authors define absolute ruin as that the liminf of the surplus process is negative infinity and propose absolute ruin minimization as the optimization scenario.Applying the HJB method the authors obtain explicit expressions for the minimal absolute ruin function and the associated optimal investment strategy.The authors find that the minimal absolute ruin function here is convex,but not S-shaped investigated by Luo and Taksar(2011).And finally,from behavioral finance point of view,the authors come to the conclusion:It is the restrictions on investment that results in the kink of minimal absolute ruin function.
基金This research is supported by the National Natural Science Foundation of China under Grant No. 10871102 and Speaialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20090031110001.
文摘This paper considers the optimal investment strategy for an insurer under the criterion of mean-variance. The risk process is a compound Poisson process and the insurer can invest in a risk-free asset and multiple risky assets. This paper obtains the optimal investment policy using the stochastic linear quadratic (LQ) control theory with no-shorting constraint. Then the efficient strategy (optimal investment strategy) and efficient frontier are derived explicitly by a verification theorem with the viscosity solution of Hamilton-Jacobi-Bellman (HJB) equation.
基金This research was supported by the National Natural Science Foundation of China(No.71571001).
文摘Under the Knightian uncertainty,this paper constructs the optimal principal(he)-agent(she)contract model based on the principal’s expected profit and the agent’s expected utility function by using the sublinear expectation theory.The output process in the model is provided by the agent’s continuous efforts and the principal cannot directly observe the agent’s efforts.In the process of work,risk-averse agent will have the opportunity to make external choices.In order to promote the agent’s continuous efforts,the principal will continuously provide the agents with consumption according to the observable output process after the probation period.In this paper,the Hamilton–Jacobi–Bellman equation is deduced by using the optimality principle under sublinear expectation while the smoothness viscosity condition of the principal-agent optimal contract is given.Moreover,the continuation value of the agent is taken as the state variable to characterize the optimal expected profit of the principal,the agent’s effort and the consumption level under different degrees of Knightian uncertainty.Finally,the behavioral economics is used to analyze the simulation results.The research findings are that the increasing Knightian uncertainty incurs the decline of the principal’s maximum profit;within the probation period,the increasing Knightian uncertainty leads to the shortening of probation period and makes the agent give higher effort when she faces the outside option;what’s more,after the smooth completion of the probation period for the agent,the agent’s consumption level will rise and her effort level will drop as Knightian uncertainty increasing.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11271287).
文摘A pricing model for a corporate bond with rating migration risk is established in this article. With the technology of utility-indifference valuation under the Markov-modulated framework, we analyze the price of a multi-rating bond and obtain closed formulae in a three-rating case. Based on the pricing formulae, the impacts of the parameters on the indifference price are analyzed and some reasonable financial explanations are provided as well.
基金supported by the Nature Science Research Project of Anhui Province,China under Grant No.1808085MA18General Program of the National Natural Science Foundation of China under Grant No.72071068。
文摘This paper considers the Merton portfolio optimization problem for an investor that aims at maximizing the expected power utility of the terminal wealth and intermediate consumption.Applying the homotopy analysis method,an analytical solution for value function as well as optimal strategy under the 3/2 model is derived,respectively.Compared with the existing explicit solutions for Merton problem under the 3/2 model,the formulas provide certain parameters with less requirement since the homotopy analysis method does not depend on the existence of small parameters in the equation.Finally,numerical examples are examined with the approach,and the proposed solution provides more accurate approximation as the number of terms in infinite series increases.
基金This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2007CB814905 and the National Natural Science Foundation of China under Grant No. 10871102.
文摘This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the case of investment in a Black-Scholes market with risky asset such as stock. The classical problem is to find the optimal dividend payment strategy that maximizes the expectation of discounted dividend payment until ruin. Motivated by the idea of Thonhauser and Albrecher (2007), we take the lifetime of the controlled risk process into account, that is, the value function considers both the expectation of discounted dividend payment and the time value of ruin. The authors conclude that the optimal dividend strategy is a barrier strategy for the unbounded dividend payment case and is of threshold type for the bounded dividend payment case.
基金supported by the National Natural Science Foundation of China under Grant No.61873254。
文摘The paper presents a numerical method for solving a class of high-dimensional stochastic control systems based on tensor decomposition and parallel computing.The HJB solution provides a globally optimal controller to the associated dynamical system.Variable substitution is used to simplify the nonlinear HJB equation.The curse of dimensionality is avoided by representing the HJB equation using separated representation.Alternating least squares(ALS)is used to reduced the separation rank.The experiment is conducted and the numerical solution is obtained.A high-performance algorithm is designed to reduce the separation rank in the parallel environment,solving the high-dimensional HJB equation with high efficiency.