This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivot...This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.展开更多
Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the ext...Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.Results In this study,we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows.Using metagenomic sequencing data from 85 fecal samples,we identified 37 bacterial species that were significantly associated with estrus return.Normally returning sows were characterized by increased abundances of L.reuteri and P.copri and decreased abundances of B.fragilis,S.suis,and B.pseudolongum.The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome.The results were confirmed in a validation cohort.Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis.An integrated analysis of differential bacterial species,metagenome,and fecal metabolome provided evidence that normal return-associated bacterial species L.reuteri and Prevotella spp.participated in the degradation of pregnenolone,progesterone,and testosterone,thereby promoting estrogen biosynthesis.Furthermore,the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return.Conclusions An integrated analysis of differentially abundant bacterial species,metagenome,and fecal metabolome revealed the involvement of L.reuteri and Prevotella spp.in sow estrus return.These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones,suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.展开更多
The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.However,whether Met exert...The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.However,whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear.Here,our clinical study showed that along with prostatic epithelial cell(PEC)proliferation,sex steroid hormones were dysregulated in the serum and prostate of BPH patients.As the major contributor to dysregulated sex steroid hormones,elevated dihydrotestosterone(DHT)had a significant positive relationship with the clinical characteristics of BPH patients.Activation of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor(AR)-mediated Yes-associated protein(YAP1)-TEA domain transcription factor(TEAD4)heterodimers.Met’s anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells.Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.展开更多
Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal ...Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.展开更多
Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is y...Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.展开更多
Background Plant hormones profoundly influence cotton growth,development,and responses to various stresses.Therefore,there is a pressing need for an efficient assay to quantify these hormones in cotton.In this groundb...Background Plant hormones profoundly influence cotton growth,development,and responses to various stresses.Therefore,there is a pressing need for an efficient assay to quantify these hormones in cotton.In this groundbreaking study,we have established QuEChERS-HPLC‒MS/MS method,for the simultaneous detection of multiple plant hormones in cotton leaves,allowing the analysis and quantification of five key plant hormones.Results Sample extraction and purification employed 0.1%acetic acid in methanol and C18 for optimal recovery of plant hormones.The method applied to cotton demonstrated excellent linearity across a concentration range of 0.05–1 mg・L−1,with linear regression coefficients exceeding 0.99.The limits of quantification(LOQs)were 20μg・kg−1 for GA3 and 5μg・kg−1 for the other four plant hormones.Recovery rates for the five plant hormones matrix spiked at levels of 5,10,100,and 1000μg・kg−1 were in the range of 79.07%to 98.97%,with intraday relative standard deviations(RSDs)ranging from 2.11%to 8.47%.The method was successfully employed to analyze and quantify the five analytes in cotton leaves treated with plant growth regulators.Conclusion The study demonstrates that the method is well-suited for the determination of five plant hormones in cotton.It exhibits excellent selectivity and sensitivity in detecting field samples,thus serving as a robust tool for indepth research into cotton physiology.展开更多
BACKGROUND Dyslipidemia and type 2 diabetes mellitus(T2DM)are chronic conditions with substantial public health implications.Effective management of lipid metabolism in patients with T2DM is critical.However,there has...BACKGROUND Dyslipidemia and type 2 diabetes mellitus(T2DM)are chronic conditions with substantial public health implications.Effective management of lipid metabolism in patients with T2DM is critical.However,there has been insufficient attention given to the relationship between thyroid hormone sensitivity and dyslipidemia in the T2DM population,particularly concerning non-high-density lipoprotein cholesterol(non-HDL-C).AIM To clarify the association between thyroid hormone sensitivity and dyslipidemia in patients with T2DM.METHODS In this cross-sectional study,thyroid hormone sensitivity indices,the thyroid feedback quantile-based index(TFQI),the thyroid-stimulating hormone index(TSHI),the thyrotrophic T4 resistance index(TT4RI),and the free triiodothyronine(FT3)/free thyroxine(FT4)ratio were calculated.Logistic regression analysis was performed to determine the associations between those composite indices and non-HDL-C levels.Random forest variable importance and Shapley Additive Explanations(SHAP)summary plots were used to identify the strength and direction of the association between hyper-non-HDL-C and its major predictor.RESULTS Among the 994 participants,389(39.13%)had high non-HDL-C levels.Logistic regression analysis revealed that the risk of hyper-non-HDL-C was positively correlated with the TFQI(OR:1.584;95%CI:1.088-2.304;P=0.016),TSHI(OR:1.238;95%CI:1.034-1.482;P=0.02),and TT4RI(OR:1.075;95%CI:1.006-1.149;P=0.032)but was not significantly correlated with the FT3/FT4 ratio.The relationships between composite indices of the thyroid system and non-HDL-C levels differed according to sex.An increased risk of hyper-non-HDL-C was associated with elevated TSHI levels in men(OR:1.331;95%CI:1.003-1.766;P=0.048)but elevated TFQI levels in women(OR:2.337;95%CI:1.4-3.901;P=0.001).Among the analyzed variables,the average SHAP values were highest for TSHI,followed by TT4RI.CONCLUSION Impaired sensitivity to thyroid hormones was associated with high non-HDL-C levels in patients with T2DM.展开更多
The aim of this study was to retrospectively evaluate the effects of male age and ejaculatory abstinence on semen parameters and reproductive hormones among men residing in Africa and the Middle East. A total of 70,14...The aim of this study was to retrospectively evaluate the effects of male age and ejaculatory abstinence on semen parameters and reproductive hormones among men residing in Africa and the Middle East. A total of 70,142 semen analysis results were analysed and grouped according to the age intervals (16 - 20, 21 - 30, 31 - 40, 41 - 50, 51 - 60, >60) and ejaculatory abstinence (<2 days, 2 - 5 days and >5 days). Semen parameters i.e. volume, concentration, progressive motility, total progressively motile count, morphology, total normal sperm count, DNA fragmentation, viability, sORP, normed sORP were specifically evaluated. Additionally, for each age interval, reproductive hormones i.e. estradiol, luteinizing hormone, follicle stimulating hormone, testosterone and prolactin were evaluated. Semen volume, total progressively motile count, sperm morphology and total normal sperm count constantly decrease significantly after the age of 30 years. Sperm concentration started declining significantly after the age of 50 years. There was a constant age- related increase in number of spermatozoa with damaged DNA. sORP constantly increased up to 60 years. Furthermore, constantage-related decreases in FSH, serum testosterone and prolact in were observed from patients aged between 16 years and 60 years. Semen volume, sperm concentration, progressive motility and normal morphology were significantly higher in patients having > 5 days of abstinence. Patients having > 5 days of abstinence had the lowest normed sORP. Male age significantly affects sperm parameters and reproductive hormones in fertile and infertile men residing in Africa and the Middle East. Prolonged abstinence days provides better semen quality.展开更多
BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence ...BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival.However,the molecular mechanisms underlying that remain unclear.AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury,steatosis and inflammation.METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis(NASH)model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes.Liver tissues were collected for western blotting and immunohisto chemistry(IHC)assays.Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining.The serum samples were collected for biochemical assays and NMR-based metabonomics analysis.The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH.RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress.The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation,inflammation and hepatic fibrosis in the pathogenesis of NASH.The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis.Mechanistically,we found that MXS protected against NASH by attenuating the sex hormone-related metabolism,especially the metabolism of male hormones.CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones.Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.展开更多
Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphi...Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies.展开更多
Background:This study aimed to investigate whether the combination of Macleaya cordata extract(MCE)and Bacil-lus could improve the laying performance and health of laying hens better.Methods:A total of 36029-week-old ...Background:This study aimed to investigate whether the combination of Macleaya cordata extract(MCE)and Bacil-lus could improve the laying performance and health of laying hens better.Methods:A total of 36029-week-old Jingbai laying hens were randomly divided into 4 treatments:control group(basal diet),MCE group(basal diet+MCE),Probiotics Bacillus Compound(PBC)group(basal diet+compound Bacil-lus),MCE+PBC group(basal diet+MCE+compound Bacillus).The feeding experiment lasted for 42 d.Results:The results showed that the laying rate and the average daily egg mass in the MCE+PBC group were significantly higher than those in the control group(P<0.05)and better than the MCE and PBC group.Combina-tion of MCE and Bacillus significantly increased the content of follicle-stimulating hormone(FSH)in the serum and up-regulated the expression of related hormone receptor gene(estrogen receptor-β,FSHR and luteinizing hormone/choriogonadotropin receptor)in the ovary of laying hens(P<0.05).In the MCE+PBC group,the mRNA expressions of zonula occluden-1,Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group(P<0.05).In addition,compared with the control group,combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity(P<0.05),and down-regulated the mRNA expressions of inflammation-related genes(interleukin-1βand tumor necrosis factor-α)as well as apoptosis-related genes(Caspase 3,Caspase 8 and P53)(P<0.05).The concen-tration of acetic acid and butyric acid in the cecum content of laying hens in the MCE+PBC group was significantly increased compared with the control group(P<0.05).Conclusions:Collectively,dietary supplementation of 600μg/kg MCE and 5×108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier,regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens,and the combined effect of MCE and Bacillus is better than that of single supplementation.展开更多
Understanding physiological responses in saline agriculture may facilitate wheat breeding programs.Based on a screening test,the Ningmai-14(NM-14)and Yangmai-23(YM-23)wheat cultivars were selected for further experime...Understanding physiological responses in saline agriculture may facilitate wheat breeding programs.Based on a screening test,the Ningmai-14(NM-14)and Yangmai-23(YM-23)wheat cultivars were selected for further experiments to understand the underlying salinity tolerance mechanism.This study investigated the effects of five salinity levels such as Control(CK)=0(without NaCl stress),S1=0.20%,S2=0.25%,S3=0.30%and S4=0.35%of NaCl concentrations of soil on wheat plants.The results showed that increased salinity concentration reduced the growth and yield of wheat cultivars(NM-14 and YM-23).However,YM-23(12.7%)yielded more than NM-14 at maximum salinity stress.The higher salinity(S4)increased the concentration of Na^(+)(4.3 to 5.8-fold)and P contents(2.5 to 2.2-fold),while reducing the average concentrations of K^(+),Cu,and K^(+)/Na^(+)ratio.The higher salinity(S4)reduced the spikelet length by 21.35%(followed by grain spike−1),and the starch content by 18.81%.In the YM-23 cultivar,higher salinity increased superoxide dismutase(SOD),total antioxidant capacity(TAC),and amylase.Compared to NM-14,induced expression of TaYUC2,6,and TaGA13ox,20ox genes were recorded in YM-23.Similarly,in YM-23 the stress-specific genes such as TaHSP70,90 were enhanced whereas,TaSOS1,2 were suppressed.Overall,our study revealed that salt tolerant cultivars modulate hormonal and antioxidant activities,thus maintaining high growth.展开更多
BACKGROUND There are systematic differences in clinical features between women and men with schizophrenia(SCZ).The regulation of sex hormones may play a potential role in abnormal neurodevelopment in SCZ.Brain-derived...BACKGROUND There are systematic differences in clinical features between women and men with schizophrenia(SCZ).The regulation of sex hormones may play a potential role in abnormal neurodevelopment in SCZ.Brain-derived neurotrophic factor(BDNF)and sex hormones have complex interacting actions that contribute to the etiology of SCZ.AIM To investigate the influence of BDNF and sex hormones on cognition and clinical symptomatology in chronic antipsychotic-treated male SCZ patients.METHODS The serum levels of follicle-stimulating hormone,luteinizing hormone(LH),estradiol(E2),progesterone,testosterone(T),prolactin(PRL)and BDNF were compared between chronic antipsychotic-treated male(CATM)patients with SCZ(n=120)and healthy controls(n=120).The Positive and Negative Syndrome Scale was used to quantify SCZ symptoms,while neuropsychological tests were used to assess cognition.Neuropsychological tests,such as the Digit Cancellation Test(DCT),Semantic Verbal Fluency(SVF),Spatial Span Test(SS),Paced Auditory Serial Addition Test(PASAT),Trail Making Task(TMT-A),and Block Design Test(BDT),were used to assess executive functions(BDT),attention(DCT,TMT-A),memory(SS,PASAT),and verbal proficiency(SVF).RESULTS Although E2 levels were significantly lower in the patient group compared to the healthy controls,T,PRL,and LH levels were all significantly higher.Additionally,the analysis revealed that across the entire sample,there were positive correlations between E2 Levels and BDNF levels as well as BDNF levels and the digital cancellation time.In CATM patients with SCZ,a significant correlation between the negative symptoms score and PRL levels was observed.CONCLUSION Sex hormones and BDNF levels may also be linked to cognitive function in patients with chronic SCZ.展开更多
[Objectives]This study was conducted to investigate the effects of Polygonatum odoratum polysaccharide(POP)on organ relative weights and reproductive hormone levels in male rats fed a high-fat diet.[Methods]Thirty hea...[Objectives]This study was conducted to investigate the effects of Polygonatum odoratum polysaccharide(POP)on organ relative weights and reproductive hormone levels in male rats fed a high-fat diet.[Methods]Thirty healthy male Sprague-Dawley(SD)rats were randomly divided into two groups according to their body weight:10 in normal control group(Group NC,n=10)and 20 in experimental group(n=20).The rats in experimental group were fed a high-fat diet for eight weeks before they were further randomly divided into two groups:high fat group(Group HF)and high fat+400 mg/(kg·d)POP group(Group HF+POP).In Group HF+POP,the rats were administered with POP for another six weeks,before their blood plasma was collected,and the relative weights of their testis and epididymis were calculated.The plasma levels of testosterone(T),estrogen(E2),follicle-stimulating hormone(FSH),cortisol(C)and luteinizing hormone(LH)were measured by radioimmunoassay,and the plasma levels of sex hormone-binding globulin(SHBG)and insulin-like growth factor-1(IGF-1)were determined by enzyme-linked immunosorbent assay.[Results]Compared with Group HF,POP could effectively inhibit rat obesity caused by high-fat diets,increase the relative weights of their testis and epididymis,plasma levels of LH,E2,FSH,T,SHBG and IGF-1,and reduce the plasma level of E2.[Conclusions]Polygonatum odoratum polysaccharide(POP)is able to effectively regulate the level of reproductive hormones in high-fat diet fed rats,and helps to protect their reproductive function.展开更多
Objective:To evaluate the legacy and novel per-and polyfluoroalkyl substances(PFAS)exposure in women of reproductive age,and to explore the effects on female reproductive hormones.Methods:We used cross-sectional data ...Objective:To evaluate the legacy and novel per-and polyfluoroalkyl substances(PFAS)exposure in women of reproductive age,and to explore the effects on female reproductive hormones.Methods:We used cross-sectional data of 433 normal women of reproductive age from 2013 to 2015.Data of age,age at menarche,parity,BMI,education,and income were collected through questionnaires,serum samples were collected for reproductive hormones,and plasma samples for PFAS measurement by ultraperformance liquid chromatography-tandem mass spectrometer(UPLC-MS/MS).Multiple linear regression and quantile g-computation were adopted to analyze the association between PFAS and reproductive hormones.Results:The detection rates of 6:2 Cl-PFESA,8:2 Cl-PFESA and HFPO-DA in the plasma were 100%,99.8%and 99.9%,respectively.The median concentrations of these chemicals were 2.27 ng/mL,0.07 ng/mL and 0.03 ng/mL,respectively.Multiple linear regression analysis showed a positive association between branched PFOS[1m-PFOS(β=0.131,95%CI:0.021,0.242),br-PFOS(β=0.119,95%CI:0.005,0.234)]and progesterone.In addition,mixed exposure model suggested that PFAS had a positive association with progesterone(β=0.549,95%CI:0.323,0.774).Conclusion:In this study,a mixed exposure model was used to evaluate the combined effects of PFAS mixtures,reflecting the association between multiple environmental PFAS exposure and reproductive hormones,and a higher concentration of novel PFAS was found in women of reproductive age,confirming that PFAS exposure may be related to reproductive hormone disorders in women of reproductive age.展开更多
[Objectives]In order to clarify the regulatory effects of insect hormones on the expression of BmSuc1 and provide a reference for further analysis of the function and expression regulation mechanism of BmSuc1,this stu...[Objectives]In order to clarify the regulatory effects of insect hormones on the expression of BmSuc1 and provide a reference for further analysis of the function and expression regulation mechanism of BmSuc1,this study explored the expression profiles of BmSuc1 in different tissues and periods of silkworm larvae and the expression changes of BmSuc1 after treatment with exogenous hormones.[Methods]By using the real-time fluorescence quantitative PCR technique,the expression characteristics of BmSuc1 were detected in different periods,different tissues and after treatment with exogenous hormones during the development of silkworm larvae.The expression of BmSuc1 and 20E receptor gene USP was detected after RNA interference with double-stranded RNA(dsRNA)of USP.[Results]The relative expression of BmSuc1 gene in the midgut was the highest,followed by the silk glands,epidermis and hemolymph.However,there was much lower or almost no expression in other tissues.In addition,the BmSuc1 expression profile exhibited a pulse-like pattern in silkworm larvae.The expression level of BmSuc1 was higher at each instar stage before molting,late fifth instar before cocooning and prepupal stage.Silkworm larvae at day 2 of the fifth instar were treated with 20-hydroxyecdysone(20E)and juvenile hormone(JH).It was found that the expression of BmSuc1 was extremely significantly higher at 12 and 18 h after 20E treatment than the control group injected with 0.1%dimethyl sulfoxide(DMSO)(P<0.01,the same below).But there were no significant difference in BmSuc1 expression between the JH treatment and the control group during the measurement time range(P>0.05).The dsRNA of USP was synthesized in vitro and injected into silkworm larvae at day 3 of the fifth instar.It was showed that the USP relative expression was extremely significantly down-regulated at 24 and 36 h after injection,which indicated that dsRNA interference was successful.RNAi of USP would block 20E signal transduction,and the expression of BmSuc1 was inhibited and significantly down-regulated at 24 and 36 h after injection of dsRNA of USP(P<0.05).[Conclusions]The BmSuc1 expression peaks appeared in the molting of silkworm larvae and the metamorphosis of larvae to pupae,which suggests that BmSuc1 may be involved in the metamorphic development process of silkworms.Treatment with exogenous ecdysone 20E can activate the expression of BmSuc1,but blocking the 20E signal transduction pathway may suppress expression of BmSuc1.It indicates that BmSuc1 as a downstream target gene in the 20E signal transduction pathway is directly or indirectly regulated by 20E signals.展开更多
Consistent climatic perturbations have increased global environmental concerns, especially the impacts of abiotic stresses on crop productivity. Rice is a staple food crop for the majority of the world’s population. ...Consistent climatic perturbations have increased global environmental concerns, especially the impacts of abiotic stresses on crop productivity. Rice is a staple food crop for the majority of the world’s population. Abiotic stresses, including salt, drought, heat, cold and heavy metals, are potential inhibitors of rice growth and yield. Abiotic stresses elicit various acclimation responses that facilitate in stress mitigation. Plant hormones play an important role in mediating the growth and development of rice plants under optimal and stressful environments by activating a multitude of signalling cascades to elicit the rice plant’s adaptive responses. The current review describes the role of plant hormone-mediated abiotic stress tolerance in rice, potential crosstalk between plant hormones involved in rice abiotic stress tolerance and significant advancements in biotechnological initiatives including genetic engineering approach to provide a step forward in making rice resistance to abiotic stress.展开更多
Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Littl...Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.展开更多
[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to U...[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.展开更多
The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during flor...The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during floret development in three wheat ( Triticum aestivum L.) genotypes: “97J1' with the highest grain set and fertile florets per spike, “H8679' with the lowest grain set and fertile florets per spike, and a medium, “YM158'. The results showed that the peak level of ABA appeared between stamen and pistil differentiation and antherlobe formation of floret development, and the timing delayed with the size of spike (earliest in “H8679” and latest in “97J1”). From antherlobe formation to meiosis, the levels of ABA and GA 1+3 decreased sharply in the ears of “97J1”, while in the ears of “H8679” there was only a slight decrease in ABA, and even an increase in GA 1+3 . The ratio of isopentenyladenosine (iPA)/ABA and IAA/ABA in the ears of “97J1” increased sharply from antherlobe formation to meiosis, but changed only slightly in the ears of “H8679”. At antherlobe formation, IAA and GA 1+3 levels were higher in the ears of “97J1”, but lower in the ears of “H8679” than in the leaves. At meiosis, ABA, GA 1+3 and IAA levels in the “97J1” ears were much lower than in the leaves, but similar in “H8679”. These results indicated that the sharp decreases of ABA and GA 1+3 in ears from antherlobe formation to meiosis and the lowest maintenance at meiosis may be favorable for development of fertile florets and enhancement of grain set in wheat.展开更多
文摘This comprehensive review explores the intricate relationship between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the context of the gut-brain axis.The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease,encompassing diverse components such as the gut microbiota,immune system,metabolism,and neural pathways.The gut microbiome,profoundly influenced by dietary factors,emerges as a key player.Nutrition during the first 1000 days of life shapes the gut microbiota composition,influencing immune responses and impacting both child development and adult health.High-fat,high-sugar diets can disrupt this delicate balance,contributing to inflammation and immune dysfunction.Exploring nutritional strategies,the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk.Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders.Beyond nutrition,emerging research uncovers potential interactions between steroid hormones,nutrition,and Parkinson's disease.Progesterone,with its anti-inflammatory properties and presence in the nervous system,offers a novel option for Parkinson's disease therapy.Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects.The review addresses the hypothesis thatα-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve.Gastrointestinal symptoms preceding motor symptoms support this hypothesis.Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances,emphasizing the potential of microbiota-based interventions.In summary,this review uncovers the complex web of interactions between nutrition,the gut microbiome,steroid hormones,and Parkinson's disease within the gut-brain axis framework.Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
基金supported by the National Key R&D Program of China(2022YFA1304204)National Natural Science Foundation of China(31772579).
文摘Background Sex hormones play important roles in the estrus return of post-weaning sows.Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota.However,the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.Results In this study,we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows.Using metagenomic sequencing data from 85 fecal samples,we identified 37 bacterial species that were significantly associated with estrus return.Normally returning sows were characterized by increased abundances of L.reuteri and P.copri and decreased abundances of B.fragilis,S.suis,and B.pseudolongum.The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome.The results were confirmed in a validation cohort.Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis.An integrated analysis of differential bacterial species,metagenome,and fecal metabolome provided evidence that normal return-associated bacterial species L.reuteri and Prevotella spp.participated in the degradation of pregnenolone,progesterone,and testosterone,thereby promoting estrogen biosynthesis.Furthermore,the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return.Conclusions An integrated analysis of differentially abundant bacterial species,metagenome,and fecal metabolome revealed the involvement of L.reuteri and Prevotella spp.in sow estrus return.These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones,suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81973377,81903689,82073906 and 82273987)the Key Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant Nos.:19KJB350006 and 19KJA460008)+1 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the initializing Fund of Xuzhou Medical University(Grant No.:D2018011)Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant Nos.:KYCX21-2733 and KYCX22-2966).
文摘The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.However,whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear.Here,our clinical study showed that along with prostatic epithelial cell(PEC)proliferation,sex steroid hormones were dysregulated in the serum and prostate of BPH patients.As the major contributor to dysregulated sex steroid hormones,elevated dihydrotestosterone(DHT)had a significant positive relationship with the clinical characteristics of BPH patients.Activation of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor(AR)-mediated Yes-associated protein(YAP1)-TEA domain transcription factor(TEAD4)heterodimers.Met’s anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells.Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.
基金funded by the grants from the Beijing Natural Science Foundation,China(6202028)the National Natural Science Foundation of China(32172723)+2 种基金the State Key Laboratory of Animal Nutrition,China(2004DA125184G2109)the Agricultural Science and Technology Innovation Program,China(ASTIP-IAS04)the China Agriculture Research System of MOF and MARA(CARS-41).
文摘Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.
基金funded by the Scientific and Technological Innovation Team Project of Seed Industry for Saline-alkali Tolerant Crop in Hebei Province(23327501D)the National Key Research and Development Program of China(2022YFD2300802,2022YFD1900703)the China Agriculture Research System(CARS-3).
文摘Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.
基金National Key R&D Program of China(2022YFD1400300)Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural SciencesChina Agriculture Research System.
文摘Background Plant hormones profoundly influence cotton growth,development,and responses to various stresses.Therefore,there is a pressing need for an efficient assay to quantify these hormones in cotton.In this groundbreaking study,we have established QuEChERS-HPLC‒MS/MS method,for the simultaneous detection of multiple plant hormones in cotton leaves,allowing the analysis and quantification of five key plant hormones.Results Sample extraction and purification employed 0.1%acetic acid in methanol and C18 for optimal recovery of plant hormones.The method applied to cotton demonstrated excellent linearity across a concentration range of 0.05–1 mg・L−1,with linear regression coefficients exceeding 0.99.The limits of quantification(LOQs)were 20μg・kg−1 for GA3 and 5μg・kg−1 for the other four plant hormones.Recovery rates for the five plant hormones matrix spiked at levels of 5,10,100,and 1000μg・kg−1 were in the range of 79.07%to 98.97%,with intraday relative standard deviations(RSDs)ranging from 2.11%to 8.47%.The method was successfully employed to analyze and quantify the five analytes in cotton leaves treated with plant growth regulators.Conclusion The study demonstrates that the method is well-suited for the determination of five plant hormones in cotton.It exhibits excellent selectivity and sensitivity in detecting field samples,thus serving as a robust tool for indepth research into cotton physiology.
基金Supported by the Xuanwu Hospital Capital Medical University Science Program for Fostering Young Scholars,No.YC20220113the Pilot Project for Public,No.Beijing Medical Research 2021-8.
文摘BACKGROUND Dyslipidemia and type 2 diabetes mellitus(T2DM)are chronic conditions with substantial public health implications.Effective management of lipid metabolism in patients with T2DM is critical.However,there has been insufficient attention given to the relationship between thyroid hormone sensitivity and dyslipidemia in the T2DM population,particularly concerning non-high-density lipoprotein cholesterol(non-HDL-C).AIM To clarify the association between thyroid hormone sensitivity and dyslipidemia in patients with T2DM.METHODS In this cross-sectional study,thyroid hormone sensitivity indices,the thyroid feedback quantile-based index(TFQI),the thyroid-stimulating hormone index(TSHI),the thyrotrophic T4 resistance index(TT4RI),and the free triiodothyronine(FT3)/free thyroxine(FT4)ratio were calculated.Logistic regression analysis was performed to determine the associations between those composite indices and non-HDL-C levels.Random forest variable importance and Shapley Additive Explanations(SHAP)summary plots were used to identify the strength and direction of the association between hyper-non-HDL-C and its major predictor.RESULTS Among the 994 participants,389(39.13%)had high non-HDL-C levels.Logistic regression analysis revealed that the risk of hyper-non-HDL-C was positively correlated with the TFQI(OR:1.584;95%CI:1.088-2.304;P=0.016),TSHI(OR:1.238;95%CI:1.034-1.482;P=0.02),and TT4RI(OR:1.075;95%CI:1.006-1.149;P=0.032)but was not significantly correlated with the FT3/FT4 ratio.The relationships between composite indices of the thyroid system and non-HDL-C levels differed according to sex.An increased risk of hyper-non-HDL-C was associated with elevated TSHI levels in men(OR:1.331;95%CI:1.003-1.766;P=0.048)but elevated TFQI levels in women(OR:2.337;95%CI:1.4-3.901;P=0.001).Among the analyzed variables,the average SHAP values were highest for TSHI,followed by TT4RI.CONCLUSION Impaired sensitivity to thyroid hormones was associated with high non-HDL-C levels in patients with T2DM.
文摘The aim of this study was to retrospectively evaluate the effects of male age and ejaculatory abstinence on semen parameters and reproductive hormones among men residing in Africa and the Middle East. A total of 70,142 semen analysis results were analysed and grouped according to the age intervals (16 - 20, 21 - 30, 31 - 40, 41 - 50, 51 - 60, >60) and ejaculatory abstinence (<2 days, 2 - 5 days and >5 days). Semen parameters i.e. volume, concentration, progressive motility, total progressively motile count, morphology, total normal sperm count, DNA fragmentation, viability, sORP, normed sORP were specifically evaluated. Additionally, for each age interval, reproductive hormones i.e. estradiol, luteinizing hormone, follicle stimulating hormone, testosterone and prolactin were evaluated. Semen volume, total progressively motile count, sperm morphology and total normal sperm count constantly decrease significantly after the age of 30 years. Sperm concentration started declining significantly after the age of 50 years. There was a constant age- related increase in number of spermatozoa with damaged DNA. sORP constantly increased up to 60 years. Furthermore, constantage-related decreases in FSH, serum testosterone and prolact in were observed from patients aged between 16 years and 60 years. Semen volume, sperm concentration, progressive motility and normal morphology were significantly higher in patients having > 5 days of abstinence. Patients having > 5 days of abstinence had the lowest normed sORP. Male age significantly affects sperm parameters and reproductive hormones in fertile and infertile men residing in Africa and the Middle East. Prolonged abstinence days provides better semen quality.
基金Supported by Chongqing Fundamental Research Funds,No.jbky20210001Key Programs of Technological Innovation and Application Development of Chongqing,China,No.cstc2021jscx-dxwtBX0016+2 种基金Natural Science Foundation of Chongqing,No.cstc2021jcyjmsxmX0793Science and Technology Project in Social Livelihood of Bishan District,Chongqing,China,No.BSKJ0078 and No.BSKJ0075Performance Incentive-oriented Project of Chongqing,No.jxjl20220007。
文摘BACKGROUND The modified Xiaoyao San(MXS)formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer,which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival.However,the molecular mechanisms underlying that remain unclear.AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury,steatosis and inflammation.METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis(NASH)model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes.Liver tissues were collected for western blotting and immunohisto chemistry(IHC)assays.Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining.The serum samples were collected for biochemical assays and NMR-based metabonomics analysis.The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH.RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress.The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation,inflammation and hepatic fibrosis in the pathogenesis of NASH.The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis.Mechanistically,we found that MXS protected against NASH by attenuating the sex hormone-related metabolism,especially the metabolism of male hormones.CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones.Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.
基金supported by the National Natural Science Foundation of China(31972267 and 3227253)the Chinese Universities Scientific Fund(2023TC109)。
文摘Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies.
基金supported by the National Natural Science Foundation of China(No.32072766,31672460,31472128)Natural Science Foundation of Zhejiang province(No.LZ20C170002)the National High-Tech R&D Program Project(863)of China(NO.2013AA102803D).
文摘Background:This study aimed to investigate whether the combination of Macleaya cordata extract(MCE)and Bacil-lus could improve the laying performance and health of laying hens better.Methods:A total of 36029-week-old Jingbai laying hens were randomly divided into 4 treatments:control group(basal diet),MCE group(basal diet+MCE),Probiotics Bacillus Compound(PBC)group(basal diet+compound Bacil-lus),MCE+PBC group(basal diet+MCE+compound Bacillus).The feeding experiment lasted for 42 d.Results:The results showed that the laying rate and the average daily egg mass in the MCE+PBC group were significantly higher than those in the control group(P<0.05)and better than the MCE and PBC group.Combina-tion of MCE and Bacillus significantly increased the content of follicle-stimulating hormone(FSH)in the serum and up-regulated the expression of related hormone receptor gene(estrogen receptor-β,FSHR and luteinizing hormone/choriogonadotropin receptor)in the ovary of laying hens(P<0.05).In the MCE+PBC group,the mRNA expressions of zonula occluden-1,Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group(P<0.05).In addition,compared with the control group,combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity(P<0.05),and down-regulated the mRNA expressions of inflammation-related genes(interleukin-1βand tumor necrosis factor-α)as well as apoptosis-related genes(Caspase 3,Caspase 8 and P53)(P<0.05).The concen-tration of acetic acid and butyric acid in the cecum content of laying hens in the MCE+PBC group was significantly increased compared with the control group(P<0.05).Conclusions:Collectively,dietary supplementation of 600μg/kg MCE and 5×108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier,regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens,and the combined effect of MCE and Bacillus is better than that of single supplementation.
基金the National Natural Science Foundation of China(32101817)Jiangsu Agriculture Science and this work was funded by the National Natural Science Foundation of China(32101817)+3 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX(21)3111)the Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJD210001)the Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology(BE2022304)the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)for their financial support.
文摘Understanding physiological responses in saline agriculture may facilitate wheat breeding programs.Based on a screening test,the Ningmai-14(NM-14)and Yangmai-23(YM-23)wheat cultivars were selected for further experiments to understand the underlying salinity tolerance mechanism.This study investigated the effects of five salinity levels such as Control(CK)=0(without NaCl stress),S1=0.20%,S2=0.25%,S3=0.30%and S4=0.35%of NaCl concentrations of soil on wheat plants.The results showed that increased salinity concentration reduced the growth and yield of wheat cultivars(NM-14 and YM-23).However,YM-23(12.7%)yielded more than NM-14 at maximum salinity stress.The higher salinity(S4)increased the concentration of Na^(+)(4.3 to 5.8-fold)and P contents(2.5 to 2.2-fold),while reducing the average concentrations of K^(+),Cu,and K^(+)/Na^(+)ratio.The higher salinity(S4)reduced the spikelet length by 21.35%(followed by grain spike−1),and the starch content by 18.81%.In the YM-23 cultivar,higher salinity increased superoxide dismutase(SOD),total antioxidant capacity(TAC),and amylase.Compared to NM-14,induced expression of TaYUC2,6,and TaGA13ox,20ox genes were recorded in YM-23.Similarly,in YM-23 the stress-specific genes such as TaHSP70,90 were enhanced whereas,TaSOS1,2 were suppressed.Overall,our study revealed that salt tolerant cultivars modulate hormonal and antioxidant activities,thus maintaining high growth.
基金Supported by This study was supported by the Suzhou Municipal Sci-Tech Bureau Program,No.SS202070Scientific and Technological Program of Suzhou,No.SS202069+5 种基金Suzhou clinical Medical Center for mood disorders,No.Szlcyxzx202109Suzhou Clinical Key Disciplines for Geriatric Psychiatry,No.SZXK202116Suzhou Key Technologies Program,No.SKY2021063Jiangsu Province social development project,No.BE2020764Research Project of Jiangsu Commission of Health,No.M2020031Elderly Health Research Project of Jiangsu Commission of Health,No.LR2022015 and No.LKZ2023020.
文摘BACKGROUND There are systematic differences in clinical features between women and men with schizophrenia(SCZ).The regulation of sex hormones may play a potential role in abnormal neurodevelopment in SCZ.Brain-derived neurotrophic factor(BDNF)and sex hormones have complex interacting actions that contribute to the etiology of SCZ.AIM To investigate the influence of BDNF and sex hormones on cognition and clinical symptomatology in chronic antipsychotic-treated male SCZ patients.METHODS The serum levels of follicle-stimulating hormone,luteinizing hormone(LH),estradiol(E2),progesterone,testosterone(T),prolactin(PRL)and BDNF were compared between chronic antipsychotic-treated male(CATM)patients with SCZ(n=120)and healthy controls(n=120).The Positive and Negative Syndrome Scale was used to quantify SCZ symptoms,while neuropsychological tests were used to assess cognition.Neuropsychological tests,such as the Digit Cancellation Test(DCT),Semantic Verbal Fluency(SVF),Spatial Span Test(SS),Paced Auditory Serial Addition Test(PASAT),Trail Making Task(TMT-A),and Block Design Test(BDT),were used to assess executive functions(BDT),attention(DCT,TMT-A),memory(SS,PASAT),and verbal proficiency(SVF).RESULTS Although E2 levels were significantly lower in the patient group compared to the healthy controls,T,PRL,and LH levels were all significantly higher.Additionally,the analysis revealed that across the entire sample,there were positive correlations between E2 Levels and BDNF levels as well as BDNF levels and the digital cancellation time.In CATM patients with SCZ,a significant correlation between the negative symptoms score and PRL levels was observed.CONCLUSION Sex hormones and BDNF levels may also be linked to cognitive function in patients with chronic SCZ.
基金Supported by Scientific Research Fund of the Hunan Provincial Education Department of China(19A259)Natural Science Foundation of Hunan Province(2022JJ30312)+2 种基金National Innovation Experiment Program for University Students(201910553013)2020 Innovation Experiment Program for College Students of Hunan University of HumanitiesScience and Technology(2020-17)。
文摘[Objectives]This study was conducted to investigate the effects of Polygonatum odoratum polysaccharide(POP)on organ relative weights and reproductive hormone levels in male rats fed a high-fat diet.[Methods]Thirty healthy male Sprague-Dawley(SD)rats were randomly divided into two groups according to their body weight:10 in normal control group(Group NC,n=10)and 20 in experimental group(n=20).The rats in experimental group were fed a high-fat diet for eight weeks before they were further randomly divided into two groups:high fat group(Group HF)and high fat+400 mg/(kg·d)POP group(Group HF+POP).In Group HF+POP,the rats were administered with POP for another six weeks,before their blood plasma was collected,and the relative weights of their testis and epididymis were calculated.The plasma levels of testosterone(T),estrogen(E2),follicle-stimulating hormone(FSH),cortisol(C)and luteinizing hormone(LH)were measured by radioimmunoassay,and the plasma levels of sex hormone-binding globulin(SHBG)and insulin-like growth factor-1(IGF-1)were determined by enzyme-linked immunosorbent assay.[Results]Compared with Group HF,POP could effectively inhibit rat obesity caused by high-fat diets,increase the relative weights of their testis and epididymis,plasma levels of LH,E2,FSH,T,SHBG and IGF-1,and reduce the plasma level of E2.[Conclusions]Polygonatum odoratum polysaccharide(POP)is able to effectively regulate the level of reproductive hormones in high-fat diet fed rats,and helps to protect their reproductive function.
基金Hainan Clinical Medical Center Construction Project(Qiongwei Yihan[2021]No.75)。
文摘Objective:To evaluate the legacy and novel per-and polyfluoroalkyl substances(PFAS)exposure in women of reproductive age,and to explore the effects on female reproductive hormones.Methods:We used cross-sectional data of 433 normal women of reproductive age from 2013 to 2015.Data of age,age at menarche,parity,BMI,education,and income were collected through questionnaires,serum samples were collected for reproductive hormones,and plasma samples for PFAS measurement by ultraperformance liquid chromatography-tandem mass spectrometer(UPLC-MS/MS).Multiple linear regression and quantile g-computation were adopted to analyze the association between PFAS and reproductive hormones.Results:The detection rates of 6:2 Cl-PFESA,8:2 Cl-PFESA and HFPO-DA in the plasma were 100%,99.8%and 99.9%,respectively.The median concentrations of these chemicals were 2.27 ng/mL,0.07 ng/mL and 0.03 ng/mL,respectively.Multiple linear regression analysis showed a positive association between branched PFOS[1m-PFOS(β=0.131,95%CI:0.021,0.242),br-PFOS(β=0.119,95%CI:0.005,0.234)]and progesterone.In addition,mixed exposure model suggested that PFAS had a positive association with progesterone(β=0.549,95%CI:0.323,0.774).Conclusion:In this study,a mixed exposure model was used to evaluate the combined effects of PFAS mixtures,reflecting the association between multiple environmental PFAS exposure and reproductive hormones,and a higher concentration of novel PFAS was found in women of reproductive age,confirming that PFAS exposure may be related to reproductive hormone disorders in women of reproductive age.
基金Supported by The Special Agricultural Basic Cooperative Research Program of Yunnan Province(202301BD070001-229)Yunnan Fundamental Research Projects(202201AT070226)The Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association(2021BA070001-070).
文摘[Objectives]In order to clarify the regulatory effects of insect hormones on the expression of BmSuc1 and provide a reference for further analysis of the function and expression regulation mechanism of BmSuc1,this study explored the expression profiles of BmSuc1 in different tissues and periods of silkworm larvae and the expression changes of BmSuc1 after treatment with exogenous hormones.[Methods]By using the real-time fluorescence quantitative PCR technique,the expression characteristics of BmSuc1 were detected in different periods,different tissues and after treatment with exogenous hormones during the development of silkworm larvae.The expression of BmSuc1 and 20E receptor gene USP was detected after RNA interference with double-stranded RNA(dsRNA)of USP.[Results]The relative expression of BmSuc1 gene in the midgut was the highest,followed by the silk glands,epidermis and hemolymph.However,there was much lower or almost no expression in other tissues.In addition,the BmSuc1 expression profile exhibited a pulse-like pattern in silkworm larvae.The expression level of BmSuc1 was higher at each instar stage before molting,late fifth instar before cocooning and prepupal stage.Silkworm larvae at day 2 of the fifth instar were treated with 20-hydroxyecdysone(20E)and juvenile hormone(JH).It was found that the expression of BmSuc1 was extremely significantly higher at 12 and 18 h after 20E treatment than the control group injected with 0.1%dimethyl sulfoxide(DMSO)(P<0.01,the same below).But there were no significant difference in BmSuc1 expression between the JH treatment and the control group during the measurement time range(P>0.05).The dsRNA of USP was synthesized in vitro and injected into silkworm larvae at day 3 of the fifth instar.It was showed that the USP relative expression was extremely significantly down-regulated at 24 and 36 h after injection,which indicated that dsRNA interference was successful.RNAi of USP would block 20E signal transduction,and the expression of BmSuc1 was inhibited and significantly down-regulated at 24 and 36 h after injection of dsRNA of USP(P<0.05).[Conclusions]The BmSuc1 expression peaks appeared in the molting of silkworm larvae and the metamorphosis of larvae to pupae,which suggests that BmSuc1 may be involved in the metamorphic development process of silkworms.Treatment with exogenous ecdysone 20E can activate the expression of BmSuc1,but blocking the 20E signal transduction pathway may suppress expression of BmSuc1.It indicates that BmSuc1 as a downstream target gene in the 20E signal transduction pathway is directly or indirectly regulated by 20E signals.
基金the Science and Engineering Research Board-Department of Science and Technology (Grant No. SRG/2020/001004)University Grants Commission Start-up Grant (Grant No. F. 30-482/2019) in South KoreaDepartment of Biotechnology-Research Associateship (Grant No. DBT-RA/2022/January/N/1186) in India。
文摘Consistent climatic perturbations have increased global environmental concerns, especially the impacts of abiotic stresses on crop productivity. Rice is a staple food crop for the majority of the world’s population. Abiotic stresses, including salt, drought, heat, cold and heavy metals, are potential inhibitors of rice growth and yield. Abiotic stresses elicit various acclimation responses that facilitate in stress mitigation. Plant hormones play an important role in mediating the growth and development of rice plants under optimal and stressful environments by activating a multitude of signalling cascades to elicit the rice plant’s adaptive responses. The current review describes the role of plant hormone-mediated abiotic stress tolerance in rice, potential crosstalk between plant hormones involved in rice abiotic stress tolerance and significant advancements in biotechnological initiatives including genetic engineering approach to provide a step forward in making rice resistance to abiotic stress.
基金supported by the State Key Laboratory of North China Crop Improvement and RegulationNational Key Research and Development Program of China (2018YFD0300501)National Natural Science Foundation of China (31872865)。
文摘Fusarium crown rot(FCR) is a soilborne disease causing severe yield losses in many wheat-growing areas of the world. Diseased plants show browning and necrosis of roots and stems causing white heads at maturity. Little is known about the molecular processes employed by wheat roots to respond to the disease. We characterized morphological, transcriptional and hormonal changes in wheat seedling roots following challenge with Fusarium pseudograminearum(Fp), the main pathogen of FCR. The pathogen inhibited root development to various extents depending on plants' resistance level. Many genes responsive to FCR infection in wheat roots were enriched in plant hormone pathways. The contents of compounds involved in biosynthesis and metabolism of jasmonic acid, salicylic acid, cytokinin and auxin were drastically changed in roots at five days post-inoculation. Presoaking seeds in methyl jasmonate for 24 h promoted FCR resistance, whereas presoaking with cytokinin 6-benzylaminopurine made plants more susceptible. Overexpression of TaOPR3, a gene involved in jasmonic acid biosynthesis, enhanced plant resistance as well as root and shoot growth during infection.
基金Supported by the Foundation of State Developing and ReformingCommittee(No.IFZ20051210)the National Natural Science Foundationof China(No.30570323,No.20471030)the Programsin Science and Technology of Nantong(No.DE2009006,No.S2009019)~~
文摘[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.
文摘The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during floret development in three wheat ( Triticum aestivum L.) genotypes: “97J1' with the highest grain set and fertile florets per spike, “H8679' with the lowest grain set and fertile florets per spike, and a medium, “YM158'. The results showed that the peak level of ABA appeared between stamen and pistil differentiation and antherlobe formation of floret development, and the timing delayed with the size of spike (earliest in “H8679” and latest in “97J1”). From antherlobe formation to meiosis, the levels of ABA and GA 1+3 decreased sharply in the ears of “97J1”, while in the ears of “H8679” there was only a slight decrease in ABA, and even an increase in GA 1+3 . The ratio of isopentenyladenosine (iPA)/ABA and IAA/ABA in the ears of “97J1” increased sharply from antherlobe formation to meiosis, but changed only slightly in the ears of “H8679”. At antherlobe formation, IAA and GA 1+3 levels were higher in the ears of “97J1”, but lower in the ears of “H8679” than in the leaves. At meiosis, ABA, GA 1+3 and IAA levels in the “97J1” ears were much lower than in the leaves, but similar in “H8679”. These results indicated that the sharp decreases of ABA and GA 1+3 in ears from antherlobe formation to meiosis and the lowest maintenance at meiosis may be favorable for development of fertile florets and enhancement of grain set in wheat.