利用疏散星团NGC 188所在天区的1046颗恒星样本的高精度3维(3D)运动学数据(自行和视向速度)测试了DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法的成员判定效果.为了避免自行和视向速度的单位不一致带...利用疏散星团NGC 188所在天区的1046颗恒星样本的高精度3维(3D)运动学数据(自行和视向速度)测试了DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法的成员判定效果.为了避免自行和视向速度的单位不一致带来的影响,在数据预处理阶段将3个分量的数据统一标准化至[0,1]区间.利用第k个最近邻点距离方法分析了1046颗恒星样本在标准化无量纲3D速度空间的分布特征,再根据第k个最近邻点距离随k值的变化趋势确定了DBSCAN聚类算法的输入参数(Eps,MinPts),最后利用DBSCAN聚类算法分离出497颗3D运动学成员星.分析结果表明得到的3D运动学成员星是可靠的.展开更多
Based on the turbulent convection model (TCM), we investigate chemical mixing in the bottom overshooting region of the convective envelope of intermediatemass stars, focusing on its influence on the formation and ex...Based on the turbulent convection model (TCM), we investigate chemical mixing in the bottom overshooting region of the convective envelope of intermediatemass stars, focusing on its influence on the formation and extension of blue loops in the Hertzsprung-Russell (HR) diagram. A diffusive mixing model is adopted during the Red Giant Branch (RGB) phase. The properties of the blue loop are changed by modification of the element profiles above the H-burning shell, which results from the incomplete mixing in the bottom overshooting region when the stellar model evolves up along the RGB. Such modification of the element profiles will lead to an increase of opacity in the region just above the H-burning shell and a decrease of opacity in the outer homogeneous convection zone, which will result in a quick decrease of the H-shell nuclear luminosity LH when the stellar model evolves from the RGB tip to its bottom and, finally, a much weaker and smaller convection zone will be obtained in the stellar envelope. This helps to form a longer blue loop. The extension of the blue loop is very sensitive to the parameters (Cx and αTCM) of the diffusive mixing model and of the TCM. The results mainly show that: 1) comparing the results of the classical model with the mixing-length theory, the lengths of the obtained blue loops with different combinations of the values of Cx and αTCM are all increased and the length of the blue loop increases with the values of parameters Cx and αTCM; 2) the diffusive mixing model can significantly extend the time of stellar models lingering on the blue side of the HR diagram, even though the length of the blue loop for the 7M⊙ star has a less prominent difference between the classical and diffusive mixing model; 3) both the observations referring to the location of the Cepheid instability strip and the number ratio NB/NR of blue to red evolved stars in the Galactic open clusters can confine the two parameters in a range of 0.5 ≤ αLTCM ≤ 0.9 and 10-5 ≤ Cx ≤ 10-4 for the model of 5M⊙. However, for the case of the 7M⊙ star, there seems to be no such definite range to even only account for the observed number ratio NB/NR. In any case, our results based on the diffusive mixing model are on the whole in accordance with not only other theoretical ones but also the observations.展开更多
The δ Scuti star catalogue is used to derive the observational locations of such stars on the HR diagram. The theoretical and observational instability strips are compared to check the theoretical red edge obtained b...The δ Scuti star catalogue is used to derive the observational locations of such stars on the HR diagram. The theoretical and observational instability strips are compared to check the theoretical red edge obtained by considering nonlocal time-dependent convection theory. The observational instability strip almost overlaps with the theoretical one, but the observed blue and red envelopes are hotter than the theoretical edges. The distribution of δ Scuti stars in the pulsation strip is not uniform.展开更多
文摘利用疏散星团NGC 188所在天区的1046颗恒星样本的高精度3维(3D)运动学数据(自行和视向速度)测试了DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法的成员判定效果.为了避免自行和视向速度的单位不一致带来的影响,在数据预处理阶段将3个分量的数据统一标准化至[0,1]区间.利用第k个最近邻点距离方法分析了1046颗恒星样本在标准化无量纲3D速度空间的分布特征,再根据第k个最近邻点距离随k值的变化趋势确定了DBSCAN聚类算法的输入参数(Eps,MinPts),最后利用DBSCAN聚类算法分离出497颗3D运动学成员星.分析结果表明得到的3D运动学成员星是可靠的.
基金supported by the National Natural Science Foundation of China(Grant Nos.10973035 and 10673030)
文摘Based on the turbulent convection model (TCM), we investigate chemical mixing in the bottom overshooting region of the convective envelope of intermediatemass stars, focusing on its influence on the formation and extension of blue loops in the Hertzsprung-Russell (HR) diagram. A diffusive mixing model is adopted during the Red Giant Branch (RGB) phase. The properties of the blue loop are changed by modification of the element profiles above the H-burning shell, which results from the incomplete mixing in the bottom overshooting region when the stellar model evolves up along the RGB. Such modification of the element profiles will lead to an increase of opacity in the region just above the H-burning shell and a decrease of opacity in the outer homogeneous convection zone, which will result in a quick decrease of the H-shell nuclear luminosity LH when the stellar model evolves from the RGB tip to its bottom and, finally, a much weaker and smaller convection zone will be obtained in the stellar envelope. This helps to form a longer blue loop. The extension of the blue loop is very sensitive to the parameters (Cx and αTCM) of the diffusive mixing model and of the TCM. The results mainly show that: 1) comparing the results of the classical model with the mixing-length theory, the lengths of the obtained blue loops with different combinations of the values of Cx and αTCM are all increased and the length of the blue loop increases with the values of parameters Cx and αTCM; 2) the diffusive mixing model can significantly extend the time of stellar models lingering on the blue side of the HR diagram, even though the length of the blue loop for the 7M⊙ star has a less prominent difference between the classical and diffusive mixing model; 3) both the observations referring to the location of the Cepheid instability strip and the number ratio NB/NR of blue to red evolved stars in the Galactic open clusters can confine the two parameters in a range of 0.5 ≤ αLTCM ≤ 0.9 and 10-5 ≤ Cx ≤ 10-4 for the model of 5M⊙. However, for the case of the 7M⊙ star, there seems to be no such definite range to even only account for the observed number ratio NB/NR. In any case, our results based on the diffusive mixing model are on the whole in accordance with not only other theoretical ones but also the observations.
基金This paper is supported in part by the National Natural Science Foundation of China (NSFC) through grant 10173013 by the Ministry of Science and Technology of China through grant G19990754 XDR thanks NSFC for continuous support.
文摘The δ Scuti star catalogue is used to derive the observational locations of such stars on the HR diagram. The theoretical and observational instability strips are compared to check the theoretical red edge obtained by considering nonlocal time-dependent convection theory. The observational instability strip almost overlaps with the theoretical one, but the observed blue and red envelopes are hotter than the theoretical edges. The distribution of δ Scuti stars in the pulsation strip is not uniform.