Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThP...Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThPIP1 gene from the Thellungiella halophila was isolated and functionally characterized in the transgenic rice. Data showed that the ThPIP1 protein encoded 284 amino acids, and was identified to be located on the plasma membrane. The expression of ThPIP1 gene in the shoots and roots of T. halophila seedlings were induced by high salinity. The transgenic rice overexpressing ThPIP1 gene significantly increased plants tolerance to salt stress through the pathway regulating the osmotic potentials, accumulation of organic small molecules substances and the ratio of K+/Na+ in the plant cells. Moreover, split-ubiquitin yeast two-hybrid assay showed that Th PIP1 protein specifically interacted with ThPIP2 and a non-specific lipid-transfer protein 2, suggesting that ThPIP1 probably play a key role in responding to the reactions of multiple external stimulus and in participating in different physiological processes of plants exposed to salt stress.展开更多
Background:Cotton(Gossypium hirsutum),the major textile fiber crop ofthe world,is negatively affected by salinity.It leads to the induction of adverse effects on growth and development of cott on.The overall yield of ...Background:Cotton(Gossypium hirsutum),the major textile fiber crop ofthe world,is negatively affected by salinity.It leads to the induction of adverse effects on growth and development of cott on.The overall yield of cotton faces major drawback once they are grown in saline soil.To improve cotton salt tolerance,tunsgenic approach offers a fast and effective way but it relies on the availability of salt tolerance genes.Results:In this study,we have reported the evaluation of ThST103,a homologue of Arabidopsis ozone-induced protein(AtOZI1)in Thellungiellahalophila,in enhancing salt tolerance in cotton.Overexpression ofThST103 enabled cotton plants to germinate and grow better than the wild types under salt stress.The transgenic lines showed enhanced survival rate in the saline environment and experienced less oxidative damage compared with the wild types.In the field,the transgenic cotton lines produced higher yield than the wild type in saline soil.Transcriptomic comparison analyses of ThST103 overexpression lines versus the wild type revealed upregulated genes enriched in salt stress tolerance and ion homeostasis.Conclusions:Our results dem on strate that ThST103 has the capability to improve salt tolerance in cotton.It can be used in cotton breeding for salt tolerance cultivars.展开更多
Background: Salinity is a major abiotic stress to global agriculture which hampers crop growth and development, and eventually reduces yield. Transgenic technology is an e ective and e cient approach to improve crop s...Background: Salinity is a major abiotic stress to global agriculture which hampers crop growth and development, and eventually reduces yield. Transgenic technology is an e ective and e cient approach to improve crop salt tolerance but depending on the availability of e ective genes. We previously isolated Salt Tolerance5(ThST5) from the halophyte Thellungiella halophila, an ortholog of Arabidopsis SPT4-2 which encodes a transcription elongation factor. However, SPT4-2-confered salt tolerance has not been evaluated in crops yet. Here we report the evaluation of Th ST5-conferred salt tolerance in cotton(Gossypium hirsutum L.).Results: The ThST5 overexpression transgenic cotton plants displayed enhanced tolerance to salt stress during seed germination and seedling stage compared with wild type. Particularly, the transgenic plants showed improved salinity tolerance as well as yield under saline field conditions. Comparative transcriptomic analysis showed that ThST5 improved salt tolerance of transgenic cotton mainly by maintaining ion homeostasis. In addition, ThST5 also orchestrated the expression of genes encoding antioxidants and salt-responsive transcription factors.Conclusion: Our results demonstrate that ThST5 is a promising candidate to improve salt tolerance in cotton.展开更多
Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the ...Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the globe. Transgenic approach is efficient to improve cotton salt tolerance but depending on the availability of salt tolerance genes.Results: In this study we evaluated salt tolerance candidate gene ST7 from Thellungiella halophila, encoding a homolog of Arabidopsis aluminum-induced protein, in cotton. Our results showed that ThST7 overexpression in cotton improved germination under NaCl stress as well as seedling growth. Our field trials also showed that ThST7 transgenic cotton lines produced higher yield under salt stress conditions. The improved salt tolerance of the transgenic cotton lines was partially contributed by enhanced antioxidation as shown by diaminobenzidine(DAB) and nitrotetrazolium blue chloride(NBT) staining. Moreover, transcriptomic analysis of ThST7 overexpression lines showed a significant upregulation of the genes involved in ion homeostasis and antioxidation, consistent with the salt tolerance phenotype of the transgenic cotton.Conclusions: Our results demonstrate that ThST7 has the ability to improve salt tolerance in cotton. The ThST7 transgenic cotton may be used in cotton breeding for salt tolerance cultivars.展开更多
With a view of studying programmed cell death (PCD) in a halophytic plant at the molecular level, we report here that apop-totic-like changes are induced by NaCl stress in Thellungiella halophila. The dose of 300 mM...With a view of studying programmed cell death (PCD) in a halophytic plant at the molecular level, we report here that apop-totic-like changes are induced by NaCl stress in Thellungiella halophila. The dose of 300 mM NaCl induced some apoptotic-like features in Thellungiella halophila cells, including the retraction of the plasma membrane from the cell wall, nuclear condensation, DNA laddering and the release of cytochrome c accompanying the increase of caspase 3-like protease activity. This process re-sulted in ultrastructural changes of mitochondria and Golgi bodies, and the appearance of autophagic vacuoles. This suggests that T. halophila suspension cell culture is an ideal system for studying severe salt stress-induced plant PCD. The results indicate that 300 mM NaCl stress-induced programmed cell death in T. halophila cells is similar to apoptosis and mitochondria play an impor-tant role in the early stage of plant PCD.展开更多
The plasma membrane Na+/H+-antiporter salt overly sensitive1 (SOS1) from the halophytic Arabidopsis-relative Thellungiella halophila (ThSOS1) shows conserved sequence and domain structure with the orthologous ge...The plasma membrane Na+/H+-antiporter salt overly sensitive1 (SOS1) from the halophytic Arabidopsis-relative Thellungiella halophila (ThSOS1) shows conserved sequence and domain structure with the orthologous genes from Arabidopsis thaliana and other plants. When expression of ThSOSt was reduced by RNA interference (RNAi), pronounced characteristics of salt-sensitivity were observed. We were interested in monitoring altered transcriptional responses between Thellungiella wild type and thsost-4, a representative RNAi line with particular emphasis on root responses to salt stress at 350 mmol/L NaCI, a concentration that is only moderately stressful for mature wild type plants. Transcript profiling revealed several functional categories of genes that were differently affected in wild-type and RNAi plants. Down-regulation of SOS1 resulted in different gene expression even in the absence of stress. The pattern of gene induction in the RNAi plant under salt stress was similar to that of glycophytic Arabidopsis rather than that of wild type Thellungiella. The RNAi plants failed to down-regulate functions that are normally reduced in wild type Thellungiella upon stress and did not up-regulate functions that characterize the Thellungiella salt stress response. Metabolite changes observed in wild type Thellungiella after salt stress were less pronounced or absent in RNAi plants. Transcript and metabolite behavior suggested SOS1 functions including but also extending its established function as a sodium transporter. The down-regulation of ThSOS1 converted the halophyte Thellungiella into a salt-sensitive plant.展开更多
Halophila ovalis is a dioecious seagrass with a wide geographical and water depth range.The objective of this study was to understand its plasticity in clonal characteristics and biomass and also its allocation betwee...Halophila ovalis is a dioecious seagrass with a wide geographical and water depth range.The objective of this study was to understand its plasticity in clonal characteristics and biomass and also its allocation between above-and belowground in seagrass beds at different water depths.Methods Four monospecific H.ovalis beds,Shabei,Xialongwei,Beimu and Yingluo,which have different water depths at maximum tide level(MTL)but otherwise similar environmental conditions,were studied.We measured main clonal characteristics,i.e.horizontal internodal length,branching angle,shoot height,leaf length and width,and rhizome diameter.Above-and belowground biomasses of H.ovalis were also estimated using a harvest method.Important Findings We found no significant differences in coverage,leaf pair density or number of stem nodes per square meter between the four study sites.However,horizontal internodal length,leaf length,width,rhizome diameter and shoot height all increased significantly with the increases in water depth from 2-to 9-m MTL and decreased when the water depths were greater than 9-m MTL.No significant difference in above-or belowground biomass between the seagrass beds was found.However,the ratio of above-to belowground biomass was significantly higher in the shallowest site compared to the other three seagrass beds,indicating that more biomass was stored belowground in deeper water.The results demonstrated plastic responses in clonal characteristics and biomass allocation in H.ovalis across the water depth gradient.展开更多
Salinity is one of the most severe environmental factors that may impair crop productivity. A proteomic study based on two-dimensional gel electrophoresis is performed in order to analyze the long-term salinity stress...Salinity is one of the most severe environmental factors that may impair crop productivity. A proteomic study based on two-dimensional gel electrophoresis is performed in order to analyze the long-term salinity stress response of Thellungiella halophila, an Arabidopsis-related halophyte. Four-week-old seedlings are exposed to long-term salinity treatment. The total crude proteins are extracted from leaf blades, separated by 2-DE, stained with Coomassie Brilliant Blue, and differentially displayed spots are identified by MALDI-TOF MS or QTOF MS/MS. Among 900 protein spots reproducibly detected on each gel, 30 spots exhibit significant change and some of them are identified. The identified proteins include not only some previously characterized stress-responsive proteins such as TIR-NBS-LRR class disease resistance protein, ferritin-1, and pathogenesis-related protein 5, but also some proteins related to energy pathway, metabolism, RNA processing and protein degradation, as well as proteins with unknown functions. The possible functions of these proteins in salinity tolerance of T. halophila are discussed and it is suggested that the long-term salinity tolerance of T. halophila is achieved, at least partly, by enhancing defense system, adjusting energy and metabolic pathway and maintaining RNA structure.展开更多
[Objective] This study aimed to investigate the chromosomes and karyotypes of three seagrass species of hydrocharitaceae-Enhalus acoroides, Thalassia hemprichii and Halophila minor collected from Li’an Lagoon, Hainan...[Objective] This study aimed to investigate the chromosomes and karyotypes of three seagrass species of hydrocharitaceae-Enhalus acoroides, Thalassia hemprichii and Halophila minor collected from Li’an Lagoon, Hainan Province, China. [Method] The root-tips of E. acoroides, T. hemprichii and the axillary buds of H. minor were selected as the materials in this study. The conventional crushing method was used to prepare the slice specimens of chromosomes, and the karyotypes of the three species were analyzed. [Result] The chromosome numbers of E. acoroides, T. hemprichii and H. minor were 2n=18, 18, 28, respectively. The karyotype formulas were K (2n)=18= 12m+6sm, K(2n)=18=12m+6sm and K(2n)=28=16m+8sm+4st, respectively. According to the standard of Stebbins, the karyotypes of E. acoroides and T. hemprichii were 2A, and that of H. minor was 2B. There was no B chromosome and satellite in these three species. [Conclusion] According to the comparison on the karyotypes of this three species, E. acoroides and T. hemprichii are similar in karyotypes to each other, indicating that there is close, inter-relationship between E. acoroides and T. hemprichii.展开更多
基金supported by the National Key Project for Cultivation of New Varieties of Genetically Modified Organisms (2014ZX08002-005)the National Basic Research Program of China (2015CB150801)
文摘Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThPIP1 gene from the Thellungiella halophila was isolated and functionally characterized in the transgenic rice. Data showed that the ThPIP1 protein encoded 284 amino acids, and was identified to be located on the plasma membrane. The expression of ThPIP1 gene in the shoots and roots of T. halophila seedlings were induced by high salinity. The transgenic rice overexpressing ThPIP1 gene significantly increased plants tolerance to salt stress through the pathway regulating the osmotic potentials, accumulation of organic small molecules substances and the ratio of K+/Na+ in the plant cells. Moreover, split-ubiquitin yeast two-hybrid assay showed that Th PIP1 protein specifically interacted with ThPIP2 and a non-specific lipid-transfer protein 2, suggesting that ThPIP1 probably play a key role in responding to the reactions of multiple external stimulus and in participating in different physiological processes of plants exposed to salt stress.
基金The Ministry of Science and Technology of China (Grant No. 2016ZX08005004-003)
文摘Background:Cotton(Gossypium hirsutum),the major textile fiber crop ofthe world,is negatively affected by salinity.It leads to the induction of adverse effects on growth and development of cott on.The overall yield of cotton faces major drawback once they are grown in saline soil.To improve cotton salt tolerance,tunsgenic approach offers a fast and effective way but it relies on the availability of salt tolerance genes.Results:In this study,we have reported the evaluation of ThST103,a homologue of Arabidopsis ozone-induced protein(AtOZI1)in Thellungiellahalophila,in enhancing salt tolerance in cotton.Overexpression ofThST103 enabled cotton plants to germinate and grow better than the wild types under salt stress.The transgenic lines showed enhanced survival rate in the saline environment and experienced less oxidative damage compared with the wild types.In the field,the transgenic cotton lines produced higher yield than the wild type in saline soil.Transcriptomic comparison analyses of ThST103 overexpression lines versus the wild type revealed upregulated genes enriched in salt stress tolerance and ion homeostasis.Conclusions:Our results dem on strate that ThST103 has the capability to improve salt tolerance in cotton.It can be used in cotton breeding for salt tolerance cultivars.
基金supported by grants from the Ministry of Science and Technol-ogy of China(Grant No.2016ZX08005004-003).
文摘Background: Salinity is a major abiotic stress to global agriculture which hampers crop growth and development, and eventually reduces yield. Transgenic technology is an e ective and e cient approach to improve crop salt tolerance but depending on the availability of e ective genes. We previously isolated Salt Tolerance5(ThST5) from the halophyte Thellungiella halophila, an ortholog of Arabidopsis SPT4-2 which encodes a transcription elongation factor. However, SPT4-2-confered salt tolerance has not been evaluated in crops yet. Here we report the evaluation of Th ST5-conferred salt tolerance in cotton(Gossypium hirsutum L.).Results: The ThST5 overexpression transgenic cotton plants displayed enhanced tolerance to salt stress during seed germination and seedling stage compared with wild type. Particularly, the transgenic plants showed improved salinity tolerance as well as yield under saline field conditions. Comparative transcriptomic analysis showed that ThST5 improved salt tolerance of transgenic cotton mainly by maintaining ion homeostasis. In addition, ThST5 also orchestrated the expression of genes encoding antioxidants and salt-responsive transcription factors.Conclusion: Our results demonstrate that ThST5 is a promising candidate to improve salt tolerance in cotton.
基金supported by grants from Ministry of Science and Technology of China(Grant No.2016ZX08005004-003).
文摘Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the globe. Transgenic approach is efficient to improve cotton salt tolerance but depending on the availability of salt tolerance genes.Results: In this study we evaluated salt tolerance candidate gene ST7 from Thellungiella halophila, encoding a homolog of Arabidopsis aluminum-induced protein, in cotton. Our results showed that ThST7 overexpression in cotton improved germination under NaCl stress as well as seedling growth. Our field trials also showed that ThST7 transgenic cotton lines produced higher yield under salt stress conditions. The improved salt tolerance of the transgenic cotton lines was partially contributed by enhanced antioxidation as shown by diaminobenzidine(DAB) and nitrotetrazolium blue chloride(NBT) staining. Moreover, transcriptomic analysis of ThST7 overexpression lines showed a significant upregulation of the genes involved in ion homeostasis and antioxidation, consistent with the salt tolerance phenotype of the transgenic cotton.Conclusions: Our results demonstrate that ThST7 has the ability to improve salt tolerance in cotton. The ThST7 transgenic cotton may be used in cotton breeding for salt tolerance cultivars.
基金supported by grants from National Natural Science Foundation of China (30870425)
文摘With a view of studying programmed cell death (PCD) in a halophytic plant at the molecular level, we report here that apop-totic-like changes are induced by NaCl stress in Thellungiella halophila. The dose of 300 mM NaCl induced some apoptotic-like features in Thellungiella halophila cells, including the retraction of the plasma membrane from the cell wall, nuclear condensation, DNA laddering and the release of cytochrome c accompanying the increase of caspase 3-like protease activity. This process re-sulted in ultrastructural changes of mitochondria and Golgi bodies, and the appearance of autophagic vacuoles. This suggests that T. halophila suspension cell culture is an ideal system for studying severe salt stress-induced plant PCD. The results indicate that 300 mM NaCl stress-induced programmed cell death in T. halophila cells is similar to apoptosis and mitochondria play an impor-tant role in the early stage of plant PCD.
文摘The plasma membrane Na+/H+-antiporter salt overly sensitive1 (SOS1) from the halophytic Arabidopsis-relative Thellungiella halophila (ThSOS1) shows conserved sequence and domain structure with the orthologous genes from Arabidopsis thaliana and other plants. When expression of ThSOSt was reduced by RNA interference (RNAi), pronounced characteristics of salt-sensitivity were observed. We were interested in monitoring altered transcriptional responses between Thellungiella wild type and thsost-4, a representative RNAi line with particular emphasis on root responses to salt stress at 350 mmol/L NaCI, a concentration that is only moderately stressful for mature wild type plants. Transcript profiling revealed several functional categories of genes that were differently affected in wild-type and RNAi plants. Down-regulation of SOS1 resulted in different gene expression even in the absence of stress. The pattern of gene induction in the RNAi plant under salt stress was similar to that of glycophytic Arabidopsis rather than that of wild type Thellungiella. The RNAi plants failed to down-regulate functions that are normally reduced in wild type Thellungiella upon stress and did not up-regulate functions that characterize the Thellungiella salt stress response. Metabolite changes observed in wild type Thellungiella after salt stress were less pronounced or absent in RNAi plants. Transcript and metabolite behavior suggested SOS1 functions including but also extending its established function as a sodium transporter. The down-regulation of ThSOS1 converted the halophyte Thellungiella into a salt-sensitive plant.
文摘Halophila ovalis is a dioecious seagrass with a wide geographical and water depth range.The objective of this study was to understand its plasticity in clonal characteristics and biomass and also its allocation between above-and belowground in seagrass beds at different water depths.Methods Four monospecific H.ovalis beds,Shabei,Xialongwei,Beimu and Yingluo,which have different water depths at maximum tide level(MTL)but otherwise similar environmental conditions,were studied.We measured main clonal characteristics,i.e.horizontal internodal length,branching angle,shoot height,leaf length and width,and rhizome diameter.Above-and belowground biomasses of H.ovalis were also estimated using a harvest method.Important Findings We found no significant differences in coverage,leaf pair density or number of stem nodes per square meter between the four study sites.However,horizontal internodal length,leaf length,width,rhizome diameter and shoot height all increased significantly with the increases in water depth from 2-to 9-m MTL and decreased when the water depths were greater than 9-m MTL.No significant difference in above-or belowground biomass between the seagrass beds was found.However,the ratio of above-to belowground biomass was significantly higher in the shallowest site compared to the other three seagrass beds,indicating that more biomass was stored belowground in deeper water.The results demonstrated plastic responses in clonal characteristics and biomass allocation in H.ovalis across the water depth gradient.
基金the National Basic Research and Development Program of China (Grant Nos. 2006CB100100, 2004CB117303)National Natural Science Foundation of China (Grants Nos. 30670203, 30570434)+1 种基金Beijing Municipal National Natural Science Foundation (Grant No. 5062021)CUN 985-3-3 and Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education of China.
文摘Salinity is one of the most severe environmental factors that may impair crop productivity. A proteomic study based on two-dimensional gel electrophoresis is performed in order to analyze the long-term salinity stress response of Thellungiella halophila, an Arabidopsis-related halophyte. Four-week-old seedlings are exposed to long-term salinity treatment. The total crude proteins are extracted from leaf blades, separated by 2-DE, stained with Coomassie Brilliant Blue, and differentially displayed spots are identified by MALDI-TOF MS or QTOF MS/MS. Among 900 protein spots reproducibly detected on each gel, 30 spots exhibit significant change and some of them are identified. The identified proteins include not only some previously characterized stress-responsive proteins such as TIR-NBS-LRR class disease resistance protein, ferritin-1, and pathogenesis-related protein 5, but also some proteins related to energy pathway, metabolism, RNA processing and protein degradation, as well as proteins with unknown functions. The possible functions of these proteins in salinity tolerance of T. halophila are discussed and it is suggested that the long-term salinity tolerance of T. halophila is achieved, at least partly, by enhancing defense system, adjusting energy and metabolic pathway and maintaining RNA structure.
基金Supported by the State key Subjecet of Botany at Hainan University (071001)the Malor Scientific Research Protect of Hainan Province, China(20080137)~~
文摘[Objective] This study aimed to investigate the chromosomes and karyotypes of three seagrass species of hydrocharitaceae-Enhalus acoroides, Thalassia hemprichii and Halophila minor collected from Li’an Lagoon, Hainan Province, China. [Method] The root-tips of E. acoroides, T. hemprichii and the axillary buds of H. minor were selected as the materials in this study. The conventional crushing method was used to prepare the slice specimens of chromosomes, and the karyotypes of the three species were analyzed. [Result] The chromosome numbers of E. acoroides, T. hemprichii and H. minor were 2n=18, 18, 28, respectively. The karyotype formulas were K (2n)=18= 12m+6sm, K(2n)=18=12m+6sm and K(2n)=28=16m+8sm+4st, respectively. According to the standard of Stebbins, the karyotypes of E. acoroides and T. hemprichii were 2A, and that of H. minor was 2B. There was no B chromosome and satellite in these three species. [Conclusion] According to the comparison on the karyotypes of this three species, E. acoroides and T. hemprichii are similar in karyotypes to each other, indicating that there is close, inter-relationship between E. acoroides and T. hemprichii.