The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we ca...The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.展开更多
A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hy...A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.展开更多
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the ...In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.展开更多
By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations an...By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.展开更多
Combining the symplectic variations theory, the homogeneous control equation and isopaxametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the gene...Combining the symplectic variations theory, the homogeneous control equation and isopaxametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the generalized Hamilton variation principle, the non-homogeneous Hamilton canonical equation for piezothermoelastic bodies was derived. Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered, and the non-homogeneous canonical equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the incensement of dimensions of the canonical equation. For the convenience of deriving Hamilton isopaxametric element formulations with four nodes, one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle. The homogeneous equation simplifies greatly the solution programs which axe often performed to solve nonhomogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.展开更多
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for appli...This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.展开更多
Several types of acoustic metamaterials composed of resonant units have been developed to achieve low-frequency bandgaps.In most of these structures,bandgaps are determined by their geometric configurations and materi...Several types of acoustic metamaterials composed of resonant units have been developed to achieve low-frequency bandgaps.In most of these structures,bandgaps are determined by their geometric configurations and material properties.This paper presents a frequency-displacement feedback control method for vibration suppression in a sandwich-like acoustic metamaterial plate.The band structure is theoretically derived using the Hamilton principle and validated by comparing the theoretical calculation results with the finite element simulation results.In this method,the feedback voltage is related to the displacement of a resonator and the excitation frequency.By applying a feedback voltage on the piezoelectric fiber-reinforced composite(PFRC)layers attached to a cantilever-mass resonator,the natural frequency of the resonator can be adjusted.It ensures that the bandgap moves in a frequency-dependent manner to keep the excitation frequency within the bandgap.Based on this frequency-displacement feedback control strategy,the bandgap of the metamaterial plate can be effectively adjusted,and the vibration of the metamaterial plate can be significantly suppressed.展开更多
By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions ...By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.展开更多
In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defi...In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.展开更多
The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to ...The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given.展开更多
Problems of micropolar thermoelasticity have been presented and discussed by some authors in the traditional framework of micropolar continuum field theory. In this paper the theory of micropolar thermoelasticity is r...Problems of micropolar thermoelasticity have been presented and discussed by some authors in the traditional framework of micropolar continuum field theory. In this paper the theory of micropolar thermoelasticity is restudied. The reason why it was restricted to a linear one is analyzed. The rather general principle of virtual work and the new formulation for the virtual work of internal forces as well as the rather complete Hamilton principle in micropolar thermoelasticity are established. From this new Hamilton principle not only the equations of motion, the balance equation of entropy, the boundary conditions of stress, couple stress and heat, but also the boundary conditions of displacement, microrotation and temperature are simultaneously derived.展开更多
We consider the vibration of elastic thin plates under certain reasonable assumptions. We derive the nonlinear equations for this model by the Hamilton Principle. Under the conditions on the hyperbolicity for the init...We consider the vibration of elastic thin plates under certain reasonable assumptions. We derive the nonlinear equations for this model by the Hamilton Principle. Under the conditions on the hyperbolicity for the initial data, we establish the local time wellposedness for the initial and boundary value problem by Picard iteration scheme, and obtain the estimates for the solutions.展开更多
In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton princip...In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.展开更多
In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive a...In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive and negative charges by positive and negative real action;gravitons are represented in equal amounts by positive and negative real, i.e., virtual action, and the components of the vacuum are characterized by deactivated virtual action. An analysis of the currents in the correlation structures of photons of static Maxwell fields with wave and particle properties, of the Maxwell vacuum and of the gravitons leads to a uniform three-dimensional representation of the structure of the action. Based on these results, a basic structure consisting of a system of oscillators is proposed, which describe the properties of charges and masses and interact with the photons of static Maxwell fields and with gravitons. All properties of the elemental components of nature can thus be traced back to a basic structure of action. It follows that nature can be derived from a uniform structure and this structure of action must therefore also be the basis of the origin of the cosmos.展开更多
The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and ...The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.展开更多
Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order...Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.展开更多
Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysi...Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.展开更多
The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic ma...The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscos- ity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.展开更多
Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-...Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for analyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed. One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution, bifurcation points, and bifurcation solutions by the shooting method and the Newton- Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.展开更多
文摘The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.
基金supported by the National Natural Science Foundation of China (10872108,10876100)the Program for New Century Excellent Talents in University (NCET-07-0477)the National Basic Research Program of China (2010CB832701)
文摘A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
基金Project supported by the National Natural Science Foundation of China(No.11472067)
文摘In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.
文摘By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.
基金Project supported by the National Natural Science Foundation of China(No.50276041)
文摘Combining the symplectic variations theory, the homogeneous control equation and isopaxametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the generalized Hamilton variation principle, the non-homogeneous Hamilton canonical equation for piezothermoelastic bodies was derived. Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered, and the non-homogeneous canonical equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the incensement of dimensions of the canonical equation. For the convenience of deriving Hamilton isopaxametric element formulations with four nodes, one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle. The homogeneous equation simplifies greatly the solution programs which axe often performed to solve nonhomogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.
基金Project supported by the National Natural Science Foundation of China(Nos.11172334 and11202247)the Fundamental Research Funds for the Central Universities(No.2013390003161292)
文摘This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.
基金supported by the National Natural Science Foundation of China(Nos.12472007 and 12072084)the Fundamental Research Funds for the Central Universities of China。
文摘Several types of acoustic metamaterials composed of resonant units have been developed to achieve low-frequency bandgaps.In most of these structures,bandgaps are determined by their geometric configurations and material properties.This paper presents a frequency-displacement feedback control method for vibration suppression in a sandwich-like acoustic metamaterial plate.The band structure is theoretically derived using the Hamilton principle and validated by comparing the theoretical calculation results with the finite element simulation results.In this method,the feedback voltage is related to the displacement of a resonator and the excitation frequency.By applying a feedback voltage on the piezoelectric fiber-reinforced composite(PFRC)layers attached to a cantilever-mass resonator,the natural frequency of the resonator can be adjusted.It ensures that the bandgap moves in a frequency-dependent manner to keep the excitation frequency within the bandgap.Based on this frequency-displacement feedback control strategy,the bandgap of the metamaterial plate can be effectively adjusted,and the vibration of the metamaterial plate can be significantly suppressed.
文摘By means of a representation of the elementary objects by the Lagrange density and by the commutators of the communication relations, correlations can be formed using the Fourier transform, which under the conditions of the Hamilton principle, describes correlation structures of the elementary objects with oscillator properties. The correlation structures obtained in this way are characterized by physical information, the essential component of which is the action. The correlation structures describe the physical properties and their interactions under the sole condition of the Hamilton’s principle. The structure, the properties and the interactions of elementary objects can be led back in this way to a fundamental four dimensional structure, which is therefore in their different modifications the building block of nature. With the presented method, an alternative interpretation of elementary physical effects to quantum mechanics is obtained. This report provides an overview of the fundamentals and statements of physical information theory and its consequences for understanding the nature of elementary objects.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.
文摘The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given.
文摘Problems of micropolar thermoelasticity have been presented and discussed by some authors in the traditional framework of micropolar continuum field theory. In this paper the theory of micropolar thermoelasticity is restudied. The reason why it was restricted to a linear one is analyzed. The rather general principle of virtual work and the new formulation for the virtual work of internal forces as well as the rather complete Hamilton principle in micropolar thermoelasticity are established. From this new Hamilton principle not only the equations of motion, the balance equation of entropy, the boundary conditions of stress, couple stress and heat, but also the boundary conditions of displacement, microrotation and temperature are simultaneously derived.
基金supported in part by Innovation Award by Wuhan University of Technology under a project Grant 20410771supported in part by China Scholarship Council under Grant 201306230035
文摘We consider the vibration of elastic thin plates under certain reasonable assumptions. We derive the nonlinear equations for this model by the Hamilton Principle. Under the conditions on the hyperbolicity for the initial data, we establish the local time wellposedness for the initial and boundary value problem by Picard iteration scheme, and obtain the estimates for the solutions.
基金the National Natural Science Foundation of China(No.10532070)
文摘In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.
文摘In physical information theory elementary objects are represented as correlation structures with oscillator properties and characterized by action. The procedure makes it possible to describe the photons of positive and negative charges by positive and negative real action;gravitons are represented in equal amounts by positive and negative real, i.e., virtual action, and the components of the vacuum are characterized by deactivated virtual action. An analysis of the currents in the correlation structures of photons of static Maxwell fields with wave and particle properties, of the Maxwell vacuum and of the gravitons leads to a uniform three-dimensional representation of the structure of the action. Based on these results, a basic structure consisting of a system of oscillators is proposed, which describe the properties of charges and masses and interact with the photons of static Maxwell fields and with gravitons. All properties of the elemental components of nature can thus be traced back to a basic structure of action. It follows that nature can be derived from a uniform structure and this structure of action must therefore also be the basis of the origin of the cosmos.
基金Supported by National Natural Science Foundation of China(No.90715034)
文摘The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.
文摘Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).
文摘Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.
基金Project supported by the National Natural Science Foundation of China(Nos.11202136,11372195,11502147,and 11602146)
文摘The dynamic stability of axially moving viscoelastic Rayleigh beams is pre- sented. The governing equation and simple support boundary condition are derived with the extended Hamilton's principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscos- ity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.
基金Project supported by the National Science Foundation for Distinguished Young Scholars of China(No. 11002084)the Shanghai Pujiang Program (No. 07pj14073)the Scientific Research Projectof Shanghai Normal University (No. SK201032)
文摘Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for analyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed. One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution, bifurcation points, and bifurcation solutions by the shooting method and the Newton- Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.