The Hamiltonian cycle problem(HCP),which is an NP-complete problem,consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once.In this paper we compare some algorith...The Hamiltonian cycle problem(HCP),which is an NP-complete problem,consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once.In this paper we compare some algorithms to solve a Hamiltonian cycle problem,using different models of computations and especially the probabilistic and quantum ones.Starting from the classical probabilistic approach of random walks,we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine(QTM),which can be a useful conceptual project tool for quantum algorithms.Introducing several constraints to the graphs,our analysis leads to not-exponential speedup improvements to the best-known algorithms.In particular,the results are based on bounded degree graphs(graphs with nodes having a maximum number of edges)and graphs with the right limited number of nodes and edges to allow them to outperform the other algorithms.展开更多
We put forward an alternative quantum algorithm for finding ttamiltonian cycles in any N-vertex graph based on adiabatic quantum computing. With a yon Neumann measurement on the final state, one may determine whether ...We put forward an alternative quantum algorithm for finding ttamiltonian cycles in any N-vertex graph based on adiabatic quantum computing. With a yon Neumann measurement on the final state, one may determine whether there is a HamiRonian cycle in the graph and pick out a cycle if there is any. Although the proposed algorithm provides a quadratic speedup, it gives an alternative algorithm based on adiabatic quantum computation, which is of interest because of its inherent robustness.展开更多
基金the project PNRR-HPC,Big Data and Quantum Computing–CN1 Spoke 10,CUP I53C22000690001.
文摘The Hamiltonian cycle problem(HCP),which is an NP-complete problem,consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once.In this paper we compare some algorithms to solve a Hamiltonian cycle problem,using different models of computations and especially the probabilistic and quantum ones.Starting from the classical probabilistic approach of random walks,we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine(QTM),which can be a useful conceptual project tool for quantum algorithms.Introducing several constraints to the graphs,our analysis leads to not-exponential speedup improvements to the best-known algorithms.In particular,the results are based on bounded degree graphs(graphs with nodes having a maximum number of edges)and graphs with the right limited number of nodes and edges to allow them to outperform the other algorithms.
文摘We put forward an alternative quantum algorithm for finding ttamiltonian cycles in any N-vertex graph based on adiabatic quantum computing. With a yon Neumann measurement on the final state, one may determine whether there is a HamiRonian cycle in the graph and pick out a cycle if there is any. Although the proposed algorithm provides a quadratic speedup, it gives an alternative algorithm based on adiabatic quantum computation, which is of interest because of its inherent robustness.