期刊文献+
共找到1,991篇文章
< 1 2 100 >
每页显示 20 50 100
基于改进Harris鹰优化的无线传感器网络分簇协议
1
作者 胡黄水 范新纪 邓育欢 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1228-1234,共7页
针对无线传感器网络因能量效率低而导致网络生命周期短的问题,提出一种新的基于改进Harris鹰优化算法的无线传感器网络分簇协议(improved Harris hawk optimization based clustering protocols for wireless sensor networks, IHHOC). ... 针对无线传感器网络因能量效率低而导致网络生命周期短的问题,提出一种新的基于改进Harris鹰优化算法的无线传感器网络分簇协议(improved Harris hawk optimization based clustering protocols for wireless sensor networks, IHHOC). IHHOC采用改进的Harris鹰优化算法获得最优簇头集,首先通过Sobol序列初始化种群,并考虑剩余能量、与基站距离以及节点密度这3个参数定义适应度函数,通过探索、过渡和开发逐次迭代最终求得最优解;其次,采用高斯随机游走策略避免IHHOC陷入局部最优.成簇后,在簇头邻近簇中基于剩余能量、与簇头和基站距离找到最优转发节点,进一步降低网络能量消耗.仿真实验结果表明,IHHOC能有效提高网络能量效率,增大网络吞吐量,延长网络生命周期. 展开更多
关键词 无线传感器网络 分簇 harris鹰优化 网络生命周期
下载PDF
基于多尺度Harris角点检测的图像配准算法 被引量:2
2
作者 尚明姝 王克朝 《电光与控制》 CSCD 北大核心 2024年第1期28-32,共5页
针对现有多尺度Harris算子算法较复杂、运算量大、精确性一般的问题,提出一种高效简便算法。首先建立多尺度空间,令Harris算子在尺度空间提取特征点,用简化的32维SIFT特征向量描述特征。利用最近邻法匹配特征点;然后采用改进的相似三角... 针对现有多尺度Harris算子算法较复杂、运算量大、精确性一般的问题,提出一种高效简便算法。首先建立多尺度空间,令Harris算子在尺度空间提取特征点,用简化的32维SIFT特征向量描述特征。利用最近邻法匹配特征点;然后采用改进的相似三角形法筛选匹配点,再使用改进的K-means算法对特征点分组,使组内特征点聚集,组间特征点远离;最后应用改进的RANSAC算法在不同组中选取特征点求变换矩阵,避免了选取的特征点距离过近,算法陷入局部最优。实验验证了所提算法的性能。 展开更多
关键词 图像配准 尺度空间 harris K-MEANS RANSAC
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
3
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
基于Harris的遗传粒子滤波及其在车牌跟踪的应用
4
作者 肖宇麒 杨帆 +1 位作者 林华 刘建树 《池州学院学报》 2024年第3期28-33,共6页
为了有效解决传统粒子滤波算法所存在的种群多样性衰减问题,消除由此而带来的算法效率、精度下降的弊端,该研究提出利用遗传算法的交叉和变异遗传操作算子来优化其重采样过程。具体而言,在重采样后,对样本集中各个样本粒子依照适应度值... 为了有效解决传统粒子滤波算法所存在的种群多样性衰减问题,消除由此而带来的算法效率、精度下降的弊端,该研究提出利用遗传算法的交叉和变异遗传操作算子来优化其重采样过程。具体而言,在重采样后,对样本集中各个样本粒子依照适应度值排列顺序,再将适应度低于平均值的样本剔除,同时从留下的适应度较优的粒子中随机地选取同等数量样本用于对应补充被剔除样本,再引入遗传算法的遗传操作对粒子进行交叉、变异操作,来完成样本集的更新。同时考虑到传统视觉目标跟踪常用的灰度和颜色直方图特征极易受到背景颜色干扰、对光照变化极为敏感和计算量也较大等问题,提出引入具有容易提取、运算量小、抗旋转或倾斜角影响等优势的Harris特征,配合遗传粒子滤波跟踪框架,得到了一种鲁棒性较高的跟踪算法。将所提出的基于Harris特征的遗传粒子滤波跟踪器应用于高速公路上的车辆车牌定位,应用实验的结果表明经过遗传操作改进的使用Harris角点检测特征的粒子滤波算法精度、数值稳定性都得到了提高,在目标快速移动、光线和背景剧烈变化等场景都能够实现对目标车牌的有效跟踪。 展开更多
关键词 粒子滤波 机器视觉 车牌跟踪 harris角点检测
下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
5
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION harris Hawks Optimisation Algorithm Complete Cross-Validation
下载PDF
An Improved Harris Hawk Optimization Algorithm
6
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 harris Hawk optimization algorithm chaotic mapping cosine strategy function optimization
下载PDF
基于Harris和卡尔曼滤波的农业机器人田间稳像算法 被引量:3
7
作者 王杰 经俊森 +2 位作者 陈正伟 徐照胜 王少平 《农业机械学报》 EI CAS CSCD 北大核心 2023年第1期30-36,53,共8页
针对田间颠簸环境影响农业机器人采集实时稳定图像问题,提出了基于Harris和卡尔曼滤波的农业机器人田间稳像算法。首先,利用摄像头获取田间抖动视频图像序列,进行图像子区域划分并计算各区域灰度均方差,进而确定各区域Harris角点阈值;... 针对田间颠簸环境影响农业机器人采集实时稳定图像问题,提出了基于Harris和卡尔曼滤波的农业机器人田间稳像算法。首先,利用摄像头获取田间抖动视频图像序列,进行图像子区域划分并计算各区域灰度均方差,进而确定各区域Harris角点阈值;通过自适应角点阈值设置,增加角点距离约束,完成图像角点检测。然后,对检测出的角点进行光流跟踪,计算出帧间运动估计参数。最后,利用自适应卡尔曼滤波算法对运动估计参数进行平滑操作并动态调整滤波平滑性能,获得精确运动估计矢量。测试结果表明,改进后的Harris角点检测算法区域平均分布标准差减小;自适应卡尔曼滤波算法在保证平滑随机运动前提下,跟踪主动运动性能平均提升30.75个百分点;稳像后的图像峰间信噪比提升15.93%,单帧处理时间为25.66 ms,满足农业机器人30 f/s高速图像采集时同步稳像对实时性要求。 展开更多
关键词 农业机器人 稳像算法 harris角点 卡尔曼滤波
下载PDF
ARCO 2-4期股骨头坏死MR征象对Harris评分影响分析
8
作者 史珊 杨学东 +5 位作者 罗萍 方继良 孙黎 谢利民 于潼 王振常 《中国骨伤》 CAS CSCD 2023年第12期1185-1190,共6页
目的:分析并确定ARCO 2-4期股骨头坏死(osteonecrosis of femoral head,ONFH)对Harris评分有影响意义的MR征象。方法:回顾性分析2019年1月至2020年6月34例行常规MR、T2 mapping、3D-SPACE序列检查及Harris评分的ARCO 2-4期ONFH患者,排除... 目的:分析并确定ARCO 2-4期股骨头坏死(osteonecrosis of femoral head,ONFH)对Harris评分有影响意义的MR征象。方法:回顾性分析2019年1月至2020年6月34例行常规MR、T2 mapping、3D-SPACE序列检查及Harris评分的ARCO 2-4期ONFH患者,排除3例,最终纳入31例,男23例,女8例,年龄18~62(40.0±10.8)岁;其中21例为双侧ONFH,共计52个ONFH,ARC02期17个,ARCO 3期24个,ARCO 4期11个。在医院数字影像信息系统(picture archiving and communication system,PACS)对MR影像征象(股骨头塌陷深度、ONFH指数、骨髓水肿、股骨头骨质增生、软骨损伤分级、软骨T2值及关节积液)进行评估及测量,在Siemens后处理工作站计算软骨定量参数T2值并测量。采用Pearson相关分析评估MR各征象与Harris评分的相关性,采用多重线性回归分析评估与Harris评分有相关性的MR征象对Harris评分的影响。结果:Pearson相关分析显示股骨头塌陷深度(r=-0.563,P=0.000)、软骨损伤分级(r=-0.500,P=0.000)及关节积液(r=-0.535,P=0.000)与Harris评分呈负相关。多重线性回归分析显示关节积液(β=-6.198,P=0.001)、股骨头塌陷深度(β=-4.085,P=0.014)对Harris评分呈负相关。结论:关节积液、股骨头塌陷深度对Harris评分有显著的负向影响关系,建议影像医师常规对股骨头塌陷深度、关节积液进行定量及等级评估,以高效精准地辅助临床诊疗。 展开更多
关键词 股骨头坏死 harris评分 MR征象 软骨损伤分级
下载PDF
自适应阈值Harris算法遥感图像配准的FPGA实现
9
作者 汪强 郭来功 《无线互联科技》 2023年第24期110-112,共3页
针对Harris角点检测器响应值R的阈值选择而导致角点失真问题,文章提出了一种基于现场可编程门阵列(FPGA)的自适应Harris角点检测器实现遥感图像的配准方式。该方式依据非最大值抑制(NMS)处理后的响应值对阈值进行实时变化。实验结果显示... 针对Harris角点检测器响应值R的阈值选择而导致角点失真问题,文章提出了一种基于现场可编程门阵列(FPGA)的自适应Harris角点检测器实现遥感图像的配准方式。该方式依据非最大值抑制(NMS)处理后的响应值对阈值进行实时变化。实验结果显示,优化架构在硬件资源仅增加2.76%的情况下,准确率相应提升了8.31%。因此,文章提出的遥感图像配准架构适用于硬件资源有限的平台。 展开更多
关键词 harris角点检测器 FPGA 非最大值抑制(NMS) 遥感图像配准
下载PDF
Harris与SURF特征点检测的手术器械机器视觉识别方法 被引量:8
10
作者 陈贤儿 梁丹 +2 位作者 傅云龙 梁冬泰 刘涛 《传感器与微系统》 CSCD 北大核心 2023年第2期118-121,共4页
针对手术器械快速识别与定位需求,提出一种基于改进Harris与SURF特征点检测的手术器械机器视觉检测方法。通过MASK匀光算法消除金属表面不均匀光泽反射,并设计改进的Harris角点检测算法实现无堆叠手术器械的快速检测。利用SURF算法提取... 针对手术器械快速识别与定位需求,提出一种基于改进Harris与SURF特征点检测的手术器械机器视觉检测方法。通过MASK匀光算法消除金属表面不均匀光泽反射,并设计改进的Harris角点检测算法实现无堆叠手术器械的快速检测。利用SURF算法提取图像特征信息,采用KD-Tree搜索相似特征矢量,以实现堆叠手术器械的准确识别与定位。实验结果表明:本文方法的识别准确率和识别时间分别为92.4%和3.15 s,可有效实现典型手术器械的视觉识别与定位。 展开更多
关键词 机器视觉 手术器械 harris角点检测 目标识别
下载PDF
基于改进Harris的消音壁亚像素级角点检测算法 被引量:3
11
作者 马韵琪 田明 +2 位作者 刘阳 王雨萌 李国旺 《长春理工大学学报(自然科学版)》 2023年第1期44-51,共8页
在计算机视觉领域,角点检测作为图像拼接、三维重建等算法的关键,能够直接影响视觉处理的最终效果。为了进一步提高角点检测在消音壁视觉检测应用场景下的精度,提出了一种亚像素级角点检测算法,首先以Harris算法获得像素级角点为中心角... 在计算机视觉领域,角点检测作为图像拼接、三维重建等算法的关键,能够直接影响视觉处理的最终效果。为了进一步提高角点检测在消音壁视觉检测应用场景下的精度,提出了一种亚像素级角点检测算法,首先以Harris算法获得像素级角点为中心角点,然后通过最小二乘法迭代计算不断逼近,最后计算得出亚像素级角点坐标。实验结果表明,算法角点检测的平均偏移量为0.18像素,相较Harris角点检测算法的偏移量降低0.56像素,在确保正确率的基础上更加接近真实值,能够满足在消音壁视觉检测应用场景下的精度需求。 展开更多
关键词 亚像素 特征提取 角点检测 harris算法 消音壁
下载PDF
基于改进3D-Harris角点检测算法的电厂地下管廊点云拼接方法研究 被引量:4
12
作者 仲宇 白钒 +4 位作者 刘勇 黄磊 袁星 张羽兵 钟锦航 《热力发电》 CAS CSCD 北大核心 2023年第1期89-97,共9页
提出一种基于改进3D-Harris角点检测算法的电厂地下管廊点云拼接方法。以电厂地下管廊多组海量点云数据为分析对象,利用主成分分析法获取目标检测点在邻域点云微切平面上的法向信息,进而提取点云的边界点;构建基于目标检测点法向信息的... 提出一种基于改进3D-Harris角点检测算法的电厂地下管廊点云拼接方法。以电厂地下管廊多组海量点云数据为分析对象,利用主成分分析法获取目标检测点在邻域点云微切平面上的法向信息,进而提取点云的边界点;构建基于目标检测点法向信息的协方差矩阵,计算并比较其角点响应强度函数,从中选出部分待筛选点作为真伪角点检测对象;利用基于高斯曲率极值点的伪角点检测方法,滤除伪角点并筛选出真角点;最后通过快速点特征直方图方法匹配各组点云间的相似角点,利用最近点搜索点云配准算法实现地下管廊多组点云间的拼接,并与传统3D-Harris角点检测算法的结果进行比较。对比表明,所提出算法计算耗时短且角点提取正确率高,可实现电厂地下管廊海量点云的精确拼接。 展开更多
关键词 电厂地下管廊 点云拼接 海量点云数据 角点检测 harris算子
下载PDF
一种改进的Harris-RANSAC长焦相机标定算法
13
作者 袁野 胡学龙 +1 位作者 陈舒涵 陈军 《扬州大学学报(自然科学版)》 CAS 北大核心 2023年第4期37-42,共6页
长焦相机采集近距离棋盘格图像时易出现相机离焦现象,导致棋盘格图像产生散焦模糊,极大地增加了相机标定的难度,同时传统的Harris角点检测算法对散焦模糊的棋盘格图像进行角点检测的结果即使经过非极大值抑制处理也仍然存在大量冗余角点... 长焦相机采集近距离棋盘格图像时易出现相机离焦现象,导致棋盘格图像产生散焦模糊,极大地增加了相机标定的难度,同时传统的Harris角点检测算法对散焦模糊的棋盘格图像进行角点检测的结果即使经过非极大值抑制处理也仍然存在大量冗余角点.针对上述问题,基于随机抽样一致(random sample consensus,RANSAC)算法提出一种改进的Harris-RANSAC长焦相机标定算法.首先,引入感兴趣区域将Harris角点检测的区域缩小到棋盘格区域以避免背景干扰;其次,采用随机抽样一致算法替代传统的非极大值抑制方法剔除冗余角点;最后,针对模糊棋盘格图像的特性构造新的响应函数,进行亚像素级角点定位,从而得到精确的角点坐标.结果表明,改进的Harris-RANSAC算法对模糊棋盘格图像进行角点检测时耗时短且精度较高,角点检测的反投影误差仅为0.432像素. 展开更多
关键词 长焦相机 harris角点检测 RANSAC算法 亚像素
下载PDF
早期康复护理对股骨颈骨折术后患者Barthel指数及Harris髋关节评分的影响 被引量:12
14
作者 牛丹英 张苗 《临床医学研究与实践》 2023年第1期164-166,共3页
目的探讨早期康复护理对股骨颈骨折术后患者Barthel指数及Harris评分的影响。方法选取2018年10月至2020年10月在我院接受手术治疗的80例股骨颈骨折患者作为研究对象,根据随机编号将其分为对照组和研究组,各40例。对照组采用常规护理,研... 目的探讨早期康复护理对股骨颈骨折术后患者Barthel指数及Harris评分的影响。方法选取2018年10月至2020年10月在我院接受手术治疗的80例股骨颈骨折患者作为研究对象,根据随机编号将其分为对照组和研究组,各40例。对照组采用常规护理,研究组采用早期康复护理。比较两组的并发症发生情况、Barthel指数、Harris髋关节评分及生活质量。结果研究组的并发症总发生率低于对照组(P<0.05)。护理1、2、4周后,两组的Barthel指数及Harris髋关节评分均升高,且研究组高于对照组(P<0.05)。研究组的心理功能、躯体功能、社会功能及物质生活评分均高于对照组(P<0.05)。结论早期康复护理应用于股骨颈骨折术后患者中能有效减少并发症,促进髋关节功能及活动能力的恢复,提高Barthel指数及Harris髋关节评分,改善生活质量。 展开更多
关键词 股骨颈骨折 早期康复护理 BARTHEL指数 harris髋关节评分
下载PDF
递进式护理在人工髋关节置换术患者中的应用效果及对Harris评分的影响 被引量:4
15
作者 陈娜 杨洁 《临床医学研究与实践》 2023年第14期122-125,共4页
目的探讨递进式护理在人工髋关节置换术(THA)患者中的应用效果及对Harris评分的影响。方法选取2019年5月至2021年5月进入本院接受THA治疗的98例患者作为研究对象,以随机数字表法将其分为对照组和观察组,每组49例。对照组给予常规护理,... 目的探讨递进式护理在人工髋关节置换术(THA)患者中的应用效果及对Harris评分的影响。方法选取2019年5月至2021年5月进入本院接受THA治疗的98例患者作为研究对象,以随机数字表法将其分为对照组和观察组,每组49例。对照组给予常规护理,观察组给予递进式护理。比较两组的护理效果。结果护理前,两组的Harris髋关节功能量表各项评分及总分无显著差异(P>0.05);护理后,观察组的Harris髋关节功能量表各项评分及总分均显著高于对照组,差异具有统计学意义(P<0.05)。护理前,两组的6 min步行距离、步频及步速无显著差异(P>0.05);护理后,观察组的6 min步行距离长于对照组,步频及步速均显著大于对照组,差异具有统计学意义(P<0.05)。护理前,两组的自我效能感量表(GSES)、Barthel指数评分无显著差异(P>0.05);护理后,观察组的GSES、Barthel指数评分均显著高于对照组,差异具有统计学意义(P<0.05)。结论递进式护理应用于THA患者中可明显提高其自我效能感,促进关节功能恢复及步态改善,进而提升其日常生活能力。 展开更多
关键词 递进式护理 人工髋关节置换术 harris评分
下载PDF
Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization 被引量:1
16
作者 Basma Mohamed Linda Mohaisen Mohamed Amin 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2349-2361,共13页
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc... In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension. 展开更多
关键词 Connected resolving set binary optimization harris hawks algorithm
下载PDF
基于Hough-Harris的消音壁顶点检测
17
作者 李国旺 李英 +1 位作者 马韵琪 夏晨旭 《长春理工大学学报(自然科学版)》 2023年第2期106-113,共8页
在消音壁领域中,消音壁的顶点检测是后续对消音壁毁伤评估、三维重建等任务的关键,检测出的顶点准确率直接影响后续任务的精确度。为提高检测出消音壁顶点的准确率,提出一种基于Hough-Harris的消音壁顶点检测算法。首先,使用Hough算法... 在消音壁领域中,消音壁的顶点检测是后续对消音壁毁伤评估、三维重建等任务的关键,检测出的顶点准确率直接影响后续任务的精确度。为提高检测出消音壁顶点的准确率,提出一种基于Hough-Harris的消音壁顶点检测算法。首先,使用Hough算法检测出的角点作为基点;然后,利用Harris检测出消音壁边框上的角点,选取以基点步长为10个像素的领域内角点作为样本点;最后,建立回归模型,利用高斯提出的最小二乘法求出最小误差,预测出消音壁顶点坐标。实验结果表明,本文算法预测顶点坐标与真实顶点坐标偏差量都小于Hough算法和Harris算法检测出的角点,IoU评估指标高达98%以上,高于Hough算法和Harris算法的IoU指标。 展开更多
关键词 HOUGH算法 harris算法 顶点检测 消音壁
下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
18
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
下载PDF
Multiobjective Economic/Environmental Dispatch Using Harris Hawks Optimization Algorithm
19
作者 T.Mahalekshmi P.Maruthupandi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期445-460,共16页
The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictio... The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictions.The emission of toxic gases from power plants leads to environmental imbalance and so it is highly mandatory to rectify this issues for obtaining optimal perfor-mance in the power systems.In this present study,the Economic and Emission Dispatch(EED)problems are resolved as multi objective Economic Dispatch pro-blems by using Harris Hawk’s Optimization(HHO),which is capable enough to resolve the concerned issue in a wider range.In addition,the clustering approach is employed to maintain the size of the Pareto Optimal(PO)set during each itera-tion and fuzzy based approach is employed to extricate compromise solution from the Pareto front.To meet the equality constraint effectively,a new demand-based constraint handling mechanism is adopted.This paper also includes Wind energy conversion system(WECS)in EED problem.The conventional thermal generator cost is taken into account while considering the overall cost functions of wind energy like overestimated,underestimated and proportional costs.The quality of the non-dominated solution set is measured using quality metrics such as Set Spacing(SP)and Hyper-Volume(HV)and the solutions are compared with other conventional algorithms to prove its efficiency.The present study is validated with the outcomes of various literature papers. 展开更多
关键词 Optimization harris hawks clustering technique non-dominated solution
下载PDF
Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture
20
作者 Saud Yonbawi Sultan Alahmari +4 位作者 T.Satyanarayana Murthy Padmakar Maddala E.Laxmi Lydia Seifedine Kadry Jungeun Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1533-1547,共15页
Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current... Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns.Weed control has become one of the significant problems in the agricultural sector.In traditional weed control,the entire field is treated uniformly by spraying the soil,a single herbicide dose,weed,and crops in the same way.For more precise farming,robots could accomplish targeted weed treatment if they could specifically find the location of the dispensable plant and identify the weed type.This may lessen by large margin utilization of agrochemicals on agricultural fields and favour sustainable agriculture.This study presents a Harris Hawks Optimizer with Graph Convolutional Network based Weed Detection(HHOGCN-WD)technique for Precision Agriculture.The HHOGCN-WD technique mainly focuses on identifying and classifying weeds for precision agriculture.For image pre-processing,the HHOGCN-WD model utilizes a bilateral normal filter(BNF)for noise removal.In addition,coupled convolutional neural network(CCNet)model is utilized to derive a set of feature vectors.To detect and classify weed,the GCN model is utilized with the HHO algorithm as a hyperparameter optimizer to improve the detection performance.The experimental results of the HHOGCN-WD technique are investigated under the benchmark dataset.The results indicate the promising performance of the presented HHOGCN-WD model over other recent approaches,with increased accuracy of 99.13%. 展开更多
关键词 Weed detection precision agriculture graph convolutional network harris hawks optimizer hyperparameter tuning
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部