The present study investigates the chemical composition and antioxidant capacity of juice from the Gannan navel orange, which is harvested at one-to two-week intervals during the ripening period. The total soluble sol...The present study investigates the chemical composition and antioxidant capacity of juice from the Gannan navel orange, which is harvested at one-to two-week intervals during the ripening period. The total soluble solid(TSS), total polyphenol content(TPC), total flavonoid content(TFC), sucrose and hesperidin contents gradually increase with the ripening of the fruit, followed by slight declines at the late maturity stage. Contrary to these observations, the contents of titratable acid(TA), vitamin C(Vc), and limonin trend downward throughout the ripening period. However, the contents of fructose, glucose, and narirutin fluctuate throughout the harvest time. Three in vitro antioxidant assays consistently indicate that the harvest time exerts no significant influence(P>0.01) on the antioxidant capacity. Furthermore, principal component analysis(PCA) and Pearson’s correlation test are performed to provide an overview of the complete dataset.This study provides valuable information for evaluating the fruit quality and determining when to harvest the fruit in order to meet the preferences of consumers. Meanwhile, our observations suggest that the fruits subjected to juice processing should be harvested at the late maturity stage to alleviate the "delayed bitterness" problem without compromising the antioxidant capacity and the flavonoid content in the juice.展开更多
A field experiment with 24 treatments consisting of three perennial forage crops [alfalfa (<em>Medicago sativa</em> L. cv. AC Longview), hybrid bromegrass (<em>Bromus riparius</em> Rehm & &...A field experiment with 24 treatments consisting of three perennial forage crops [alfalfa (<em>Medicago sativa</em> L. cv. AC Longview), hybrid bromegrass (<em>Bromus riparius</em> Rehm & <em>Bromus inermis</em> Leyss. cv. AC Success) and their mixture], four Cut 1 dates (approximately June 20, July 10, July 30 or August 20), and two fertilizer levels (unfertilized and fertilized) was established in late May 2014, on a Black Chernozem [Udic Boroll] silty clay soil. Forage dry matter yield [DMY], and concentration (g<span style="white-space:nowrap;">·</span>kg<sup><span style="white-space:nowrap;">−</span>1</sup> DM) of crude protein [CP], total digestible nutrients [TDN] and acid detergent fiber [ADF] data were collected over 3 years from 2015 to 2017. The fertilizer treatments were imposed in 2016 and 2017. Forage crops were initially cut at four Cut 1 dates, and again cut [Cut 2] in autumn (September 2 in 2015, November 7 in 2016 and October 5 in 2017). For all three forage crops, forage DMY usually increased when Cut 1 was delayed. Delaying Cut 1 reduced forage DMY for Cut 2. Total DMY (Cut 1 + Cut 2) for all three forage crops was highest from the combination of July 10 and late Autumn cuts. Alfalfa-bromegrass mixture produced higher DMY than bromegrass or alfalfa alone. Fertilizer application resulted in a significant increase in Cut 1 and total DMY for bromegrass. The CP concentration in Cut 1 forage usually declined as the forage crops matured. The CP concentration was highest for alfalfa, followed by alfalfa-bromegrass mixture, and much lower for bromegrass. There was little or no effect of forage crop maturity on the TDN and ADF concentrations in forage. The TDN concentration was higher and ADF concentration was lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass. Fertilizer application significantly increased CP concentration for alfalfa-bromegrass mixture. Delaying harvesting for Cut 1 increased ADF yield and TDN yield until Late July, but CP yield generally decreased with crop maturity. The ADF yield and TDN yield were higher for alfalfa-bromegrass mixture than bromegrass or alfalfa alone, and CP yield was similar for alfalfa and alfalfa-bromegrass mixture but considerably higher than bromegrass. Fertilizer application increased CP yield and ADF yield for bromegrass and alfalfa-bromegrass mixture, and TDN yield only for bromegrass. In conclusion, total DMY (Cut 1 + Cut 2) was highest for a combination of Early July and Autumn cuts. Forage yield was highest for alfalfa-bromegrass mixture, followed by alfalfa and lowest for bromegrass. The CP and TDN concentrations were higher, and ADF concentrations were lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass.展开更多
[ Objectives] This study was conducted to compare agrimophol contentsin Agrimonia pilosa Ledeb. at different harvest time, so as to select its best harvest time. [Methods] High performance liquid chromatography was us...[ Objectives] This study was conducted to compare agrimophol contentsin Agrimonia pilosa Ledeb. at different harvest time, so as to select its best harvest time. [Methods] High performance liquid chromatography was used for the determination of agfmophol in A. pilosa Ledeb. at different harvest time in Luzhou. [ Results ] The content of agrimophol could be detected by HPLC. Agrimophol had good linearity in 0.01 - 0.1 mg/ml ( r = 0.999 9 ), the average recov- ery was 101.5%, and RSD was 1.10%. The content of agrimophol in A. pilosa Ledeb. in Luzhou was 0.010 8% in June, and 0.013 1% in July, much higher than any other months. [ Conclusions] This experiment established a method for detecting the content of agrimophol by HPLC, which is simple, with high precision, high accuracy, good repeatability and recovery. The reasonable harvest time of A. pilosa Ledeb. in Luzhou is June and July.展开更多
Harvest time is assumed to potentially influence shape and size variation of calcium oxalate (CaOx) crystals;therefore it needs to be observed microscopically. This research used porang corms from the second growing p...Harvest time is assumed to potentially influence shape and size variation of calcium oxalate (CaOx) crystals;therefore it needs to be observed microscopically. This research used porang corms from the second growing period which were planted to produce the vegetative phase of third growing period. These corms were obtained based on the harvest time had determined. The harvest time was determined, i.e. 1) at two weeks before the plants shed (R<sub>0</sub> - 1);2) when the plants shed (R<sub>0</sub>) and 3) at two weeks after the plants shed (R<sub>0</sub> + 1). Slides for microscopic observation were obtained from slices on the edge and center of porang corms. Organ slices were cleared using modified clearing method. Parameters observed were the shape and the size of CaOx crystal. The variations of styloid, prism, druse and raphide crystals found in porang corms at the three harvest time were 1, 2, 3 and 37 variations respectively. The variation of CaOx crystals tended to be same in porang corms at three harvest times. The variation of these crystals tended to be static. It is also known that raphide crystal has the greatest variation amount. On the contrary, styloid crystal has the fewest variation amounts. This abundance of a number of raphide crystal variations is possibly due to its role as a defense mechanism in porang corms.展开更多
[Objectives]To further study the technology of short-cut flowering branches for Guire No.82 Mango,adjust its harvest time,increase yield and improve fruit quality,and increase the economic benefits of mango production...[Objectives]To further study the technology of short-cut flowering branches for Guire No.82 Mango,adjust its harvest time,increase yield and improve fruit quality,and increase the economic benefits of mango production.[Methods]The experiment of short-cut flowering branches was carried out for Guire No.82 Mango.[Results]At the initial flowering stage and full flowering stage of the primary inflorescence,with short-cut flowering branches and corresponding cultivation techniques,Guire No.82 Mango was easy to extract regenerated inflorescences.Compared with the control group,the flowering period of the regenerated inflorescences was delayed by 30-35 d and 40-50 d,respectively;the harvest time was delayed by 30 and 40 d,respectively;the yield significantly increased by 1.63 times and 2.25 times,respectively;compared with the control group,the number of fruits with embryo increased significantly,which were 1.39 and 2.25 times of the control,respectively;there was no significant difference in the fruit quality at the harvest time.[Conclusions]Short-cut flowering branches at the initial flowering stage and full flowering stage of the primary inflorescence is an effective measure to delay the marketing time of Guire No.82 Mango.展开更多
Lonicerae japonicaeFlos (LJF) is widely used in traditional Chinese medicines for the treatment of various diseases, which is now in great demand every year and has a broad development prospect. However, the flowering...Lonicerae japonicaeFlos (LJF) is widely used in traditional Chinese medicines for the treatment of various diseases, which is now in great demand every year and has a broad development prospect. However, the flowering phase of common LJF varieties is so short, which seriously restricts the development of LJF industry. As a new cultivated kind of Lonicerae japonicae Flos, “Hua Jin 6” has characteristics in long flowering phase and conveniently picking, which makes it have a broad development prospect. The aim of this study is to provide scientific guidance for its suitable harvest period by measuring yield and quality of “Hua Jin 6” from different harvest time. Studies show that flower size had a slowly rising trend from the first day to the seventh day, and then slowly declined or kept stable. There were no significant differences of total phenolic acid contents in different samples from different days, but contents of total flavonoids were on the rise and up to maximum in the ninth day. The contents of total iridoids had an increasing tendency from the first day to the fifth day and then kept relatively stable in other days. We demonstrated that the quality of “Hua Jin 6” is relatively stable and suitable for harvesting in all flower buds white stage in term of HPLC fingerprints. Our findings can make it possible to select the suitable time for different harvest purpose.展开更多
Barley(Hordeum vulgare L.)grasses(BG)have attracted considerable interest due to their multiple physiological activities and health benefits.In this paper,eight BG at four different growth stages were collected:seedli...Barley(Hordeum vulgare L.)grasses(BG)have attracted considerable interest due to their multiple physiological activities and health benefits.In this paper,eight BG at four different growth stages were collected:seedling,tillering,stem elongation,and heading,and their product qualities and biological activities were examined and studied.Results demonstrated that harvest time obviously influenced proximate composition,surface color,and amino acid profile.Z21 and Z23 harvested at the seedling and early tillering stages,respectively,had higher total phenolic content(TPC)and total flavonoid content(TFC)than the other BG.Moreover,Z21 and Z23 possessed better DPPH radical-scavenging ability,antioxidant capacity,andα-glucosidase inhibitory activity,which were positively correlated with TPC,TFC,and protein and total amino acid contents.Our findings suggested that the early tillering stages were the preferable harvest times for BG with good product quality and biological properties.展开更多
To determine the optimal time for harvesting the seeds of Gui 39722, which is the female parent of a newly-developed maize hybrid Guidan 0810, the cobs of Gui 39722 were harvested 31 (the first stage), 34 (the seco...To determine the optimal time for harvesting the seeds of Gui 39722, which is the female parent of a newly-developed maize hybrid Guidan 0810, the cobs of Gui 39722 were harvested 31 (the first stage), 34 (the second stage), 37 (the third stage), 40 (the fourth stage), 43 (the fifth stage) and 46 (the sixth stage) d after pollination and oven dried at 38 ~C to constant weight. Then, the 1 000-ker- nel weight, germination rate and the agronomic traits of three-leaf seedlings were measured and compared. The results showed that the seeds of Gui 39722 harvest- ed 43 d after pollination (the fifth stage) had the greatest germination rate, seedling height, vigor index, root dry weight, shoot dry weight and germination potential, and high 1 000-kernel weight (very close to the highest level), root length, number of roots per seedling and root-shoot ratio. Therefore, 43 d after pollination was the op- timal time for harvesting the seeds of Gui 39722, when the effective accumulated temperature after pollination reached 780.7 ℃ and the ear leaf dried. The seeds harvested at this stage had the highest yield and the best quality. Field sampling revealed that 89.00% to 95.00% (with an average of 91.15%) of the seedlings of six stages of seeds grew well.展开更多
By assay of accelerated aging germination, germination index, vigor index, seedling length, seedling weight, electric conductivity, dehydrogenase activity, ATP content and acid phosphoesterase activity during seed dev...By assay of accelerated aging germination, germination index, vigor index, seedling length, seedling weight, electric conductivity, dehydrogenase activity, ATP content and acid phosphoesterase activity during seed development of turf-type tall fescue, the seed vigor of tall fescue were studied. Combining with seed moisture content and yield, the optimal harvesting time of tall fescue was determined. The results indicated that the seed vigor increased continuously along with seed maturity, and the higher seed vigor was achieved at 19th day after perk anthesis and maintained continuously until 31st day after peak anthesis. At 25th day after peak anthesis, the highest yield of 3 533 kg ha-1 and the good quality of seeds of tall fescue were harvested with 32.19% moisture content. From 22nd to 31st day after peak anthesis, the seed yield of 3 300 kg ha-1 and the good quality seeds of tall fescue were harvested with 40 - 12. 43% moisture content, and the span was the optimal harvesting time.展开更多
[Objective] This study aimed to study the effects of different picking time and storage environment on fruit quality of a pear cultivar Xinlin No.7 and the relationship between storage environment and fruit quality, s...[Objective] This study aimed to study the effects of different picking time and storage environment on fruit quality of a pear cultivar Xinlin No.7 and the relationship between storage environment and fruit quality, so as to provide a theoretical basis for storage and preservation of Xinli No.7. [Method] The fruits of Xinli NO.7 were picked up in August (optimal) and September respectively and then stored in room, cellar and freezer, respectively. The dynamics in temperature, humidity, CO2 concentration, fruit weight loss rate, pericarp chlorophyll content and fruit interior quality were determined. [Result] The environment differed significantly among different storage methods. In room and cellar, the temperature showed a downward trend, and the humidity decreased after early-mid October. The CO2 concentration changed steadily, and increased rapidly in cellar after December. In freezer, the temperature and humidity changed steadily, and the CO2 concentration increased after October. The changes in quality of the fruits harvested in August and September were similar. There was a certain correlation between storage environment and fruit quality of Xinli No.7. In room and cellar, the variation trends of tem- perature and humidity were consistent with those of chlorophyll content, fruit hardness and titratable acid content with positive correlations, but were opposite from those of fruit weight loss rate, soluble solids content and soluble sugar content with negative correlations. In freezer, the CO2 concentration was closely related to the changes in fruit quality. Its variation trend was consistent with those of fruit weight loss rate and soluble solids content, but was opposite from those of pericarp chlorophyll content, fruit firmness, soluble sugar content and titratable acid content. The differences in some of the traits reached significant levels (P〈0.05, P〈0.01). [Conclusion] With the extension of storage time, the temperature, humidity and CO2 concentration changed according to different patterns among different storage methods. The changes in fruit quality of Xinli NO.7 were related to the storage environment, especially to the temperature, to a certain extent.展开更多
基金financially supported by the National Natural Science Foundation of China(31860091)the Natural Science Foundation of Jiangxi Province,China(20171BCB24011)+1 种基金the Open Foundation of National Engineering Research Center of Navel Orangethe Research Foundation of Ganzhou,Jiangxi,China(2017179 and 201960)。
文摘The present study investigates the chemical composition and antioxidant capacity of juice from the Gannan navel orange, which is harvested at one-to two-week intervals during the ripening period. The total soluble solid(TSS), total polyphenol content(TPC), total flavonoid content(TFC), sucrose and hesperidin contents gradually increase with the ripening of the fruit, followed by slight declines at the late maturity stage. Contrary to these observations, the contents of titratable acid(TA), vitamin C(Vc), and limonin trend downward throughout the ripening period. However, the contents of fructose, glucose, and narirutin fluctuate throughout the harvest time. Three in vitro antioxidant assays consistently indicate that the harvest time exerts no significant influence(P>0.01) on the antioxidant capacity. Furthermore, principal component analysis(PCA) and Pearson’s correlation test are performed to provide an overview of the complete dataset.This study provides valuable information for evaluating the fruit quality and determining when to harvest the fruit in order to meet the preferences of consumers. Meanwhile, our observations suggest that the fruits subjected to juice processing should be harvested at the late maturity stage to alleviate the "delayed bitterness" problem without compromising the antioxidant capacity and the flavonoid content in the juice.
文摘A field experiment with 24 treatments consisting of three perennial forage crops [alfalfa (<em>Medicago sativa</em> L. cv. AC Longview), hybrid bromegrass (<em>Bromus riparius</em> Rehm & <em>Bromus inermis</em> Leyss. cv. AC Success) and their mixture], four Cut 1 dates (approximately June 20, July 10, July 30 or August 20), and two fertilizer levels (unfertilized and fertilized) was established in late May 2014, on a Black Chernozem [Udic Boroll] silty clay soil. Forage dry matter yield [DMY], and concentration (g<span style="white-space:nowrap;">·</span>kg<sup><span style="white-space:nowrap;">−</span>1</sup> DM) of crude protein [CP], total digestible nutrients [TDN] and acid detergent fiber [ADF] data were collected over 3 years from 2015 to 2017. The fertilizer treatments were imposed in 2016 and 2017. Forage crops were initially cut at four Cut 1 dates, and again cut [Cut 2] in autumn (September 2 in 2015, November 7 in 2016 and October 5 in 2017). For all three forage crops, forage DMY usually increased when Cut 1 was delayed. Delaying Cut 1 reduced forage DMY for Cut 2. Total DMY (Cut 1 + Cut 2) for all three forage crops was highest from the combination of July 10 and late Autumn cuts. Alfalfa-bromegrass mixture produced higher DMY than bromegrass or alfalfa alone. Fertilizer application resulted in a significant increase in Cut 1 and total DMY for bromegrass. The CP concentration in Cut 1 forage usually declined as the forage crops matured. The CP concentration was highest for alfalfa, followed by alfalfa-bromegrass mixture, and much lower for bromegrass. There was little or no effect of forage crop maturity on the TDN and ADF concentrations in forage. The TDN concentration was higher and ADF concentration was lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass. Fertilizer application significantly increased CP concentration for alfalfa-bromegrass mixture. Delaying harvesting for Cut 1 increased ADF yield and TDN yield until Late July, but CP yield generally decreased with crop maturity. The ADF yield and TDN yield were higher for alfalfa-bromegrass mixture than bromegrass or alfalfa alone, and CP yield was similar for alfalfa and alfalfa-bromegrass mixture but considerably higher than bromegrass. Fertilizer application increased CP yield and ADF yield for bromegrass and alfalfa-bromegrass mixture, and TDN yield only for bromegrass. In conclusion, total DMY (Cut 1 + Cut 2) was highest for a combination of Early July and Autumn cuts. Forage yield was highest for alfalfa-bromegrass mixture, followed by alfalfa and lowest for bromegrass. The CP and TDN concentrations were higher, and ADF concentrations were lower in forage from alfalfa or alfalfa-bromegrass mixture than bromegrass.
文摘[ Objectives] This study was conducted to compare agrimophol contentsin Agrimonia pilosa Ledeb. at different harvest time, so as to select its best harvest time. [Methods] High performance liquid chromatography was used for the determination of agfmophol in A. pilosa Ledeb. at different harvest time in Luzhou. [ Results ] The content of agrimophol could be detected by HPLC. Agrimophol had good linearity in 0.01 - 0.1 mg/ml ( r = 0.999 9 ), the average recov- ery was 101.5%, and RSD was 1.10%. The content of agrimophol in A. pilosa Ledeb. in Luzhou was 0.010 8% in June, and 0.013 1% in July, much higher than any other months. [ Conclusions] This experiment established a method for detecting the content of agrimophol by HPLC, which is simple, with high precision, high accuracy, good repeatability and recovery. The reasonable harvest time of A. pilosa Ledeb. in Luzhou is June and July.
文摘Harvest time is assumed to potentially influence shape and size variation of calcium oxalate (CaOx) crystals;therefore it needs to be observed microscopically. This research used porang corms from the second growing period which were planted to produce the vegetative phase of third growing period. These corms were obtained based on the harvest time had determined. The harvest time was determined, i.e. 1) at two weeks before the plants shed (R<sub>0</sub> - 1);2) when the plants shed (R<sub>0</sub>) and 3) at two weeks after the plants shed (R<sub>0</sub> + 1). Slides for microscopic observation were obtained from slices on the edge and center of porang corms. Organ slices were cleared using modified clearing method. Parameters observed were the shape and the size of CaOx crystal. The variations of styloid, prism, druse and raphide crystals found in porang corms at the three harvest time were 1, 2, 3 and 37 variations respectively. The variation of CaOx crystals tended to be same in porang corms at three harvest times. The variation of these crystals tended to be static. It is also known that raphide crystal has the greatest variation amount. On the contrary, styloid crystal has the fewest variation amounts. This abundance of a number of raphide crystal variations is possibly due to its role as a defense mechanism in porang corms.
基金Supported by Project of Guangxi Science and Technology Program"Demonstration and Extension of Technology for Postponing Harvest time of Mango"(Gui Ke AB17292084)Agricultural Technology Research Project of Baise City。
文摘[Objectives]To further study the technology of short-cut flowering branches for Guire No.82 Mango,adjust its harvest time,increase yield and improve fruit quality,and increase the economic benefits of mango production.[Methods]The experiment of short-cut flowering branches was carried out for Guire No.82 Mango.[Results]At the initial flowering stage and full flowering stage of the primary inflorescence,with short-cut flowering branches and corresponding cultivation techniques,Guire No.82 Mango was easy to extract regenerated inflorescences.Compared with the control group,the flowering period of the regenerated inflorescences was delayed by 30-35 d and 40-50 d,respectively;the harvest time was delayed by 30 and 40 d,respectively;the yield significantly increased by 1.63 times and 2.25 times,respectively;compared with the control group,the number of fruits with embryo increased significantly,which were 1.39 and 2.25 times of the control,respectively;there was no significant difference in the fruit quality at the harvest time.[Conclusions]Short-cut flowering branches at the initial flowering stage and full flowering stage of the primary inflorescence is an effective measure to delay the marketing time of Guire No.82 Mango.
文摘Lonicerae japonicaeFlos (LJF) is widely used in traditional Chinese medicines for the treatment of various diseases, which is now in great demand every year and has a broad development prospect. However, the flowering phase of common LJF varieties is so short, which seriously restricts the development of LJF industry. As a new cultivated kind of Lonicerae japonicae Flos, “Hua Jin 6” has characteristics in long flowering phase and conveniently picking, which makes it have a broad development prospect. The aim of this study is to provide scientific guidance for its suitable harvest period by measuring yield and quality of “Hua Jin 6” from different harvest time. Studies show that flower size had a slowly rising trend from the first day to the seventh day, and then slowly declined or kept stable. There were no significant differences of total phenolic acid contents in different samples from different days, but contents of total flavonoids were on the rise and up to maximum in the ninth day. The contents of total iridoids had an increasing tendency from the first day to the fifth day and then kept relatively stable in other days. We demonstrated that the quality of “Hua Jin 6” is relatively stable and suitable for harvesting in all flower buds white stage in term of HPLC fingerprints. Our findings can make it possible to select the suitable time for different harvest purpose.
基金This work was supported financially by the National Natural Science Foundation of China(31671812)China Agriculture Research System of MOF and MARA(CARS-05-01A-02)the program from Institute of Science and Technology Innovation,DGUT(KCYCXPT2017007).Finally,the authors would like to extend thanks to Prof.Hang Xiao from University of Massachusetts for his continuous advice.
文摘Barley(Hordeum vulgare L.)grasses(BG)have attracted considerable interest due to their multiple physiological activities and health benefits.In this paper,eight BG at four different growth stages were collected:seedling,tillering,stem elongation,and heading,and their product qualities and biological activities were examined and studied.Results demonstrated that harvest time obviously influenced proximate composition,surface color,and amino acid profile.Z21 and Z23 harvested at the seedling and early tillering stages,respectively,had higher total phenolic content(TPC)and total flavonoid content(TFC)than the other BG.Moreover,Z21 and Z23 possessed better DPPH radical-scavenging ability,antioxidant capacity,andα-glucosidase inhibitory activity,which were positively correlated with TPC,TFC,and protein and total amino acid contents.Our findings suggested that the early tillering stages were the preferable harvest times for BG with good product quality and biological properties.
基金Supported by Key Scientific Research Program of Guangxi(AB16380133,AB16380140)Agricultural Science and Technology Achievement Transformation Fund of Guangxi(1346004-16)+1 种基金the Scientific and Technological Development Project of Guangxi Academy of Agricultural Sciences[2015YT24,201303(A)]Agricultural Science and Technology Achievement Transformation Fund of Ministry of Science and Technology(2013GB2E100378)~~
文摘To determine the optimal time for harvesting the seeds of Gui 39722, which is the female parent of a newly-developed maize hybrid Guidan 0810, the cobs of Gui 39722 were harvested 31 (the first stage), 34 (the second stage), 37 (the third stage), 40 (the fourth stage), 43 (the fifth stage) and 46 (the sixth stage) d after pollination and oven dried at 38 ~C to constant weight. Then, the 1 000-ker- nel weight, germination rate and the agronomic traits of three-leaf seedlings were measured and compared. The results showed that the seeds of Gui 39722 harvest- ed 43 d after pollination (the fifth stage) had the greatest germination rate, seedling height, vigor index, root dry weight, shoot dry weight and germination potential, and high 1 000-kernel weight (very close to the highest level), root length, number of roots per seedling and root-shoot ratio. Therefore, 43 d after pollination was the op- timal time for harvesting the seeds of Gui 39722, when the effective accumulated temperature after pollination reached 780.7 ℃ and the ear leaf dried. The seeds harvested at this stage had the highest yield and the best quality. Field sampling revealed that 89.00% to 95.00% (with an average of 91.15%) of the seedlings of six stages of seeds grew well.
基金The study was supported by“948”Project of the Ministry of Agriculture of China.
文摘By assay of accelerated aging germination, germination index, vigor index, seedling length, seedling weight, electric conductivity, dehydrogenase activity, ATP content and acid phosphoesterase activity during seed development of turf-type tall fescue, the seed vigor of tall fescue were studied. Combining with seed moisture content and yield, the optimal harvesting time of tall fescue was determined. The results indicated that the seed vigor increased continuously along with seed maturity, and the higher seed vigor was achieved at 19th day after perk anthesis and maintained continuously until 31st day after peak anthesis. At 25th day after peak anthesis, the highest yield of 3 533 kg ha-1 and the good quality of seeds of tall fescue were harvested with 32.19% moisture content. From 22nd to 31st day after peak anthesis, the seed yield of 3 300 kg ha-1 and the good quality seeds of tall fescue were harvested with 40 - 12. 43% moisture content, and the span was the optimal harvesting time.
文摘[Objective] This study aimed to study the effects of different picking time and storage environment on fruit quality of a pear cultivar Xinlin No.7 and the relationship between storage environment and fruit quality, so as to provide a theoretical basis for storage and preservation of Xinli No.7. [Method] The fruits of Xinli NO.7 were picked up in August (optimal) and September respectively and then stored in room, cellar and freezer, respectively. The dynamics in temperature, humidity, CO2 concentration, fruit weight loss rate, pericarp chlorophyll content and fruit interior quality were determined. [Result] The environment differed significantly among different storage methods. In room and cellar, the temperature showed a downward trend, and the humidity decreased after early-mid October. The CO2 concentration changed steadily, and increased rapidly in cellar after December. In freezer, the temperature and humidity changed steadily, and the CO2 concentration increased after October. The changes in quality of the fruits harvested in August and September were similar. There was a certain correlation between storage environment and fruit quality of Xinli No.7. In room and cellar, the variation trends of tem- perature and humidity were consistent with those of chlorophyll content, fruit hardness and titratable acid content with positive correlations, but were opposite from those of fruit weight loss rate, soluble solids content and soluble sugar content with negative correlations. In freezer, the CO2 concentration was closely related to the changes in fruit quality. Its variation trend was consistent with those of fruit weight loss rate and soluble solids content, but was opposite from those of pericarp chlorophyll content, fruit firmness, soluble sugar content and titratable acid content. The differences in some of the traits reached significant levels (P〈0.05, P〈0.01). [Conclusion] With the extension of storage time, the temperature, humidity and CO2 concentration changed according to different patterns among different storage methods. The changes in fruit quality of Xinli NO.7 were related to the storage environment, especially to the temperature, to a certain extent.