Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers e...Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.展开更多
This article proposes a new methodology to predict the wave height and period joint distributions by utilizing a transformed linear simulation method. The proposed transformed linear simulation method is based on a He...This article proposes a new methodology to predict the wave height and period joint distributions by utilizing a transformed linear simulation method. The proposed transformed linear simulation method is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave height and period joint distributions of a sea state with the surface elevation data measured at an offshore site, and its accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.展开更多
This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite trans...This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial and calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave trough distributions of a nonlinear sea state with the surface elevation data measured at the coast of Yura in the Japan Sea, and its accuracy and efficiency are convincingly validated by comparisons with the results from two theoretical distribution models, from a linear simulation model and a secondorder nonlinear simulation model. Finally, it is further demonstrated in this paper that the new approach can be applied to all the situations characterized by similar nondimensional spectrum.展开更多
In this paper, the Wick-type stochastic mKdV equation is researched. Many Wick-type stochastic solitonlike solutions are given via Hermite transformation and further generalized projective Riccati equation method.
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the mod- ified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling ...Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the mod- ified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.展开更多
A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to W...A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach.展开更多
The Mehler formula for the Hermite polynomials allows for an integral representation of the one-dimensional Fractional Fourier transform. In this paper, we introduce a multi-dimensional Fractional Fourier transform in...The Mehler formula for the Hermite polynomials allows for an integral representation of the one-dimensional Fractional Fourier transform. In this paper, we introduce a multi-dimensional Fractional Fourier transform in the framework of Clifford analysis. By showing that it coincides with the classical tensorial approach we are able to prove Mehler's formula for the generalized Clifford-Hermite polynomials of Clifford analysis.展开更多
In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stoch...In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.展开更多
文摘Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.
基金supported by the funding of an independent research project from the Chinese State Key Laboratory of Ocean Engineering(Grant No.GKZD010038)
文摘This article proposes a new methodology to predict the wave height and period joint distributions by utilizing a transformed linear simulation method. The proposed transformed linear simulation method is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave height and period joint distributions of a sea state with the surface elevation data measured at an offshore site, and its accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.
基金financially supported by the Major Project of the Ministry of Education and the Ministry of Finance of China(Grant No.GKZY010004)
文摘This paper first proposes a new approach for predicting the nonlinear wave trough distributions by utilizing a transformed linear simulation method. The linear simulation method is transformed based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial and calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave trough distributions of a nonlinear sea state with the surface elevation data measured at the coast of Yura in the Japan Sea, and its accuracy and efficiency are convincingly validated by comparisons with the results from two theoretical distribution models, from a linear simulation model and a secondorder nonlinear simulation model. Finally, it is further demonstrated in this paper that the new approach can be applied to all the situations characterized by similar nondimensional spectrum.
基金国家重点基础研究发展计划(973计划),the National Natural Science Foundation of China under
文摘In this paper, the Wick-type stochastic mKdV equation is researched. Many Wick-type stochastic solitonlike solutions are given via Hermite transformation and further generalized projective Riccati equation method.
文摘Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the mod- ified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.
文摘A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach.
基金The work is supported by Research Grant of the University of Macao No.RG021/03-045/QT/FST
文摘The Mehler formula for the Hermite polynomials allows for an integral representation of the one-dimensional Fractional Fourier transform. In this paper, we introduce a multi-dimensional Fractional Fourier transform in the framework of Clifford analysis. By showing that it coincides with the classical tensorial approach we are able to prove Mehler's formula for the generalized Clifford-Hermite polynomials of Clifford analysis.
文摘In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.