In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the ...In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.展开更多
In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit i...In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit in the system. As a result, the Si'lnikov criterion along with some other given conditions guarantees that the system has both Smale horseshoes and chaos of horseshoe type.展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic ...Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system-far various resonant cases finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena.展开更多
In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by app...In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system.展开更多
An important problem in a given dynamical system is to determine the existence of a homoclinic orbit. We improve the results of Qin and Xiao [Nonlinearity, 20 (2007), 2305-2317], who present some sufficient conditio...An important problem in a given dynamical system is to determine the existence of a homoclinic orbit. We improve the results of Qin and Xiao [Nonlinearity, 20 (2007), 2305-2317], who present some sufficient conditions for the existence of a homoclinic/heteroclinic orbit for the generalized H@non map. Moreover, an algorithm is presented to locate these homoclinic orbits.展开更多
Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and...Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and continuous systems, and these homoclinic or heteroclinic orbits are some kind of spiral structure.展开更多
Non-Hamiltonian systems containing degenerate fixed points obtained from twodegrees of freedom near-integrable Hamiltonian systems through non-canonicaltransformations are dealt with in this paper. Two criteria .for d...Non-Hamiltonian systems containing degenerate fixed points obtained from twodegrees of freedom near-integrable Hamiltonian systems through non-canonicaltransformations are dealt with in this paper. Two criteria .for determining theexistence of transversal homoclinic and heteroclinic orbits are presented. By exploitingthese criteria the existence of the transversal homoclinic orbits and so, of thetransversal homoclinic tangle .phenomenon in the near-integrable circular planarrestricted three-body problem with sufficiently small mass ratio of the two primaries isproven. Under some assumptions, the existence of the transversal heleroclinic orbits isproven. The global qualitative phase diagram is also illustrated.展开更多
Using the theory of invariant manifolds, we give local expressions of the stable and unstable manifolds for normally hyperbolic invariant tori, and study the existence of transverse orbits heteroclinic to hyperbolic i...Using the theory of invariant manifolds, we give local expressions of the stable and unstable manifolds for normally hyperbolic invariant tori, and study the existence of transverse orbits heteroclinic to hyperbolic invariant tori. These extend and improve the corresponding results obtained in [3-5].展开更多
More and more attention has been focused on effectively generating chaos via simple physical devices. The problem of creating chaotic attractors is considered for a class of nonlinear systems with backlash function in...More and more attention has been focused on effectively generating chaos via simple physical devices. The problem of creating chaotic attractors is considered for a class of nonlinear systems with backlash function in this paper. By utilizing the Silnikov heteroclinic and homoclinic theorems, some sufficient conditions are established to guarantee that the nonlinear system has horseshoe-type chaos. Examples and simulations are given to verify the effectiveness of the theoretical results.展开更多
Recently,dealing with the non-Euclidean data and its characterization is considered as one of the major issues by researchers.The first problem arises while defining the distinction among Euclidean and non-Euclidean g...Recently,dealing with the non-Euclidean data and its characterization is considered as one of the major issues by researchers.The first problem arises while defining the distinction among Euclidean and non-Euclidean geometry with its examples.The second problem arises while dealing with the non-Euclidean geometry in true,false,and uncertain regions.The third problem arises while investigating some patterns in non-Euclidean data sets.This paper focused on tackling these issues with some real-life examples in data processing,data visualization,knowledge representation,and quantum computing.展开更多
In this paper, we use the Melnikov function method to study a kind of soft Duffing equations[1] and give the condition that the equations have chaotic motion and bifurcation. The method used in this paper is effective...In this paper, we use the Melnikov function method to study a kind of soft Duffing equations[1] and give the condition that the equations have chaotic motion and bifurcation. The method used in this paper is effective for dealing with the Melnikov function integral of the system whose explict expression of the homoclinic or heteroclinic orbit cannot be given.展开更多
The dynamics behavior of tension bar with periodic tension velocity was presented. Melnikov method war used to study the dynamic system. The results show that material nonlinear may result in anomalous dynamics respon...The dynamics behavior of tension bar with periodic tension velocity was presented. Melnikov method war used to study the dynamic system. The results show that material nonlinear may result in anomalous dynamics response. The subharmonic bifurcation and chaos may occur in the determined system when the tension velocity exceeds the critical value.展开更多
The chaotic motions of axial compressed nonlinear elastic beam subjected to transverse load were studied. The damping force in the system is nonlinear. Considering material and geometric nonlinearity, nonlinear govern...The chaotic motions of axial compressed nonlinear elastic beam subjected to transverse load were studied. The damping force in the system is nonlinear. Considering material and geometric nonlinearity, nonlinear governing equation of the system was derived. By use of nonlinear Galerkin method, differential dynamic system was set up. Melnikov method was used to analyze the characters of the system.The results showed that chaos may occur in the system when the load parameters P 0 and f satisfy some conditions. The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaos was analyzed. The critical conditions that chaos occurs were determined.展开更多
Comments on 'Non-existence of Shilnikov chaos in continuous-time systems' are given.An error has been found in the proof of Theorem 1 in the paper by Elhadj and Sprott(Elhadj,Z.and Sprott,J.Non-existence of Sh...Comments on 'Non-existence of Shilnikov chaos in continuous-time systems' are given.An error has been found in the proof of Theorem 1 in the paper by Elhadj and Sprott(Elhadj,Z.and Sprott,J.Non-existence of Shilnikov chaos in continuous-time systems.Applied Mathematics and Mechanics(English Edition),33(3),1-4(2012)).It makes the main conclusion of the paper incorrect,that is to say,the non-existence of Shilnikov chaos in the continuous-time systems considered cannot be ensured.Furthermore,a counter-example shows that Theorem 1 in the paper is incorrect.展开更多
In this paper, the Melnikov function method has been used to analyse the distance between stable manifold and unstable manifold of the soft spring Duffing equation([1]) after its heteroclinic orbits rupture as the res...In this paper, the Melnikov function method has been used to analyse the distance between stable manifold and unstable manifold of the soft spring Duffing equation([1]) after its heteroclinic orbits rupture as the result of a small perturbation. The conditions that limit circles are bifurcated are given, and then their stability and location is determined.展开更多
The dynamic response of the non-linear elastic simply supportedbeam subjected to axial forces and transverse periodic load isstudied. Melnikov method is used to consider the dynamic behav- iorof the system whose post-...The dynamic response of the non-linear elastic simply supportedbeam subjected to axial forces and transverse periodic load isstudied. Melnikov method is used to consider the dynamic behav- iorof the system whose post-buckling path is steady. The effect of thehigher order terms in the con- trolling equation is taken intoaccount. It is found that the fifth-order terms have a greatinfluence on the dynamic behavior of the system. The result showsthat there exist either homoclinic orbits or hete- roclinic orbits inthe system. In this paper, the critical values of the system enteringchaotic states are given. The diagram of an example is shown.展开更多
This paper considers nonlinear dynamics of teth- ered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with ...This paper considers nonlinear dynamics of teth- ered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with the nonlinear dynamical behaviors of the equilibrium configurations of the system. Compared with the classical circular restricted three body system, sixteen equilibrium configurations are obtained globally from the geometry of pseudo-potential energy sur- face, four of which were omitted in the previous research. The periodic Lyapunov orbits and their invariant manifolds near the hyperbolic equilibria are presented, and an iteration procedure for identifying Lyapunov orbit is proposed based on the differential correction algorithm. The non-transversal intersections between invariant manifolds are addressed to generate homoclinic and heteroclinic trajectories between the Lyapunov orbits. (3,3)- and (2,1)-heteroclinic trajecto- ries from the neighborhood of one collinear equilibrium to that of another one, and (3,6)- and (2,1)-homoclinic trajecto- ries from and to the neighborhood of the same equilibrium, are obtained based on the Poincar6 mapping technique.展开更多
This paper considers the generalized KdV equation with or without natural boundary conditions and provides a parameter region for solitons and solitary waves, and also modifies a result of Zabuskys. The solitary bifur...This paper considers the generalized KdV equation with or without natural boundary conditions and provides a parameter region for solitons and solitary waves, and also modifies a result of Zabuskys. The solitary bifurcation has been discussed.展开更多
By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation probl...By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation problems of homoclinic and periodic orbits. Asymptotic expressions of the bifurcation surfaces and their relative positions are given. The results obtained in literature concerned with the 1\|hom bifurcation surfaces are improved and extended to the nontransversal case. Existence regions of the 1\|per orbits bifurcated from Γ are described, and the uniqueness and incoexistence of the 1\|hom and 1\|per orbit and the inexistence of the 2\|hom and 2\|per orbit are also obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072168 and 10872141)
文摘In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61170037 and 61074192)
文摘In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit in the system. As a result, the Si'lnikov criterion along with some other given conditions guarantees that the system has both Smale horseshoes and chaos of horseshoe type.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
文摘Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system-far various resonant cases finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena.
基金Supported by National Natural Science Foundation of China under Grant No. 70271068
文摘In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system.
基金Supported by NSFC(11101295,11301256)SCED(13ZB0005,14TD0026)
文摘An important problem in a given dynamical system is to determine the existence of a homoclinic orbit. We improve the results of Qin and Xiao [Nonlinearity, 20 (2007), 2305-2317], who present some sufficient conditions for the existence of a homoclinic/heteroclinic orbit for the generalized H@non map. Moreover, an algorithm is presented to locate these homoclinic orbits.
文摘Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and continuous systems, and these homoclinic or heteroclinic orbits are some kind of spiral structure.
文摘Non-Hamiltonian systems containing degenerate fixed points obtained from twodegrees of freedom near-integrable Hamiltonian systems through non-canonicaltransformations are dealt with in this paper. Two criteria .for determining theexistence of transversal homoclinic and heteroclinic orbits are presented. By exploitingthese criteria the existence of the transversal homoclinic orbits and so, of thetransversal homoclinic tangle .phenomenon in the near-integrable circular planarrestricted three-body problem with sufficiently small mass ratio of the two primaries isproven. Under some assumptions, the existence of the transversal heleroclinic orbits isproven. The global qualitative phase diagram is also illustrated.
基金Supported by the National Natural Science Foundation of China Shanghai Natural Science Foundation.
文摘Using the theory of invariant manifolds, we give local expressions of the stable and unstable manifolds for normally hyperbolic invariant tori, and study the existence of transverse orbits heteroclinic to hyperbolic invariant tori. These extend and improve the corresponding results obtained in [3-5].
基金supported by the National Natural Science Foundation of China(Grant Nos 60834002,60603006,60628301 and 60873021)the International Science and Technology Cooperative Project(Grant No 2008DFA12150)
文摘More and more attention has been focused on effectively generating chaos via simple physical devices. The problem of creating chaotic attractors is considered for a class of nonlinear systems with backlash function in this paper. By utilizing the Silnikov heteroclinic and homoclinic theorems, some sufficient conditions are established to guarantee that the nonlinear system has horseshoe-type chaos. Examples and simulations are given to verify the effectiveness of the theoretical results.
文摘Recently,dealing with the non-Euclidean data and its characterization is considered as one of the major issues by researchers.The first problem arises while defining the distinction among Euclidean and non-Euclidean geometry with its examples.The second problem arises while dealing with the non-Euclidean geometry in true,false,and uncertain regions.The third problem arises while investigating some patterns in non-Euclidean data sets.This paper focused on tackling these issues with some real-life examples in data processing,data visualization,knowledge representation,and quantum computing.
文摘In this paper, we use the Melnikov function method to study a kind of soft Duffing equations[1] and give the condition that the equations have chaotic motion and bifurcation. The method used in this paper is effective for dealing with the Melnikov function integral of the system whose explict expression of the homoclinic or heteroclinic orbit cannot be given.
文摘The dynamics behavior of tension bar with periodic tension velocity was presented. Melnikov method war used to study the dynamic system. The results show that material nonlinear may result in anomalous dynamics response. The subharmonic bifurcation and chaos may occur in the determined system when the tension velocity exceeds the critical value.
文摘The chaotic motions of axial compressed nonlinear elastic beam subjected to transverse load were studied. The damping force in the system is nonlinear. Considering material and geometric nonlinearity, nonlinear governing equation of the system was derived. By use of nonlinear Galerkin method, differential dynamic system was set up. Melnikov method was used to analyze the characters of the system.The results showed that chaos may occur in the system when the load parameters P 0 and f satisfy some conditions. The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaos was analyzed. The critical conditions that chaos occurs were determined.
基金Project supported by the National Natural Science Foundation of China(No.11102156)the Northwestern Polytechnical University Foundation for Fundamental Research
文摘Comments on 'Non-existence of Shilnikov chaos in continuous-time systems' are given.An error has been found in the proof of Theorem 1 in the paper by Elhadj and Sprott(Elhadj,Z.and Sprott,J.Non-existence of Shilnikov chaos in continuous-time systems.Applied Mathematics and Mechanics(English Edition),33(3),1-4(2012)).It makes the main conclusion of the paper incorrect,that is to say,the non-existence of Shilnikov chaos in the continuous-time systems considered cannot be ensured.Furthermore,a counter-example shows that Theorem 1 in the paper is incorrect.
文摘In this paper, the Melnikov function method has been used to analyse the distance between stable manifold and unstable manifold of the soft spring Duffing equation([1]) after its heteroclinic orbits rupture as the result of a small perturbation. The conditions that limit circles are bifurcated are given, and then their stability and location is determined.
基金the National Natural Sciences Foundation of China
文摘The dynamic response of the non-linear elastic simply supportedbeam subjected to axial forces and transverse periodic load isstudied. Melnikov method is used to consider the dynamic behav- iorof the system whose post-buckling path is steady. The effect of thehigher order terms in the con- trolling equation is taken intoaccount. It is found that the fifth-order terms have a greatinfluence on the dynamic behavior of the system. The result showsthat there exist either homoclinic orbits or hete- roclinic orbits inthe system. In this paper, the critical values of the system enteringchaotic states are given. The diagram of an example is shown.
基金supported by the National Natural Science Foundation of China(11172020)Talent Foundation supported by the Fundamental Research Funds for the Central Universities+1 种基金Aerospace Science and Technology Innovation Foundation of China Aerospace Science Corporationthe National High Technology Research and Development Program of China(863)(2012AA120601)
文摘This paper considers nonlinear dynamics of teth- ered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with the nonlinear dynamical behaviors of the equilibrium configurations of the system. Compared with the classical circular restricted three body system, sixteen equilibrium configurations are obtained globally from the geometry of pseudo-potential energy sur- face, four of which were omitted in the previous research. The periodic Lyapunov orbits and their invariant manifolds near the hyperbolic equilibria are presented, and an iteration procedure for identifying Lyapunov orbit is proposed based on the differential correction algorithm. The non-transversal intersections between invariant manifolds are addressed to generate homoclinic and heteroclinic trajectories between the Lyapunov orbits. (3,3)- and (2,1)-heteroclinic trajecto- ries from the neighborhood of one collinear equilibrium to that of another one, and (3,6)- and (2,1)-homoclinic trajecto- ries from and to the neighborhood of the same equilibrium, are obtained based on the Poincar6 mapping technique.
基金Research partially supported by Shanghai Development Grant of Education Committee(# 2 0 0 0 A1 0 )
文摘This paper considers the generalized KdV equation with or without natural boundary conditions and provides a parameter region for solitons and solitary waves, and also modifies a result of Zabuskys. The solitary bifurcation has been discussed.
文摘By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation problems of homoclinic and periodic orbits. Asymptotic expressions of the bifurcation surfaces and their relative positions are given. The results obtained in literature concerned with the 1\|hom bifurcation surfaces are improved and extended to the nontransversal case. Existence regions of the 1\|per orbits bifurcated from Γ are described, and the uniqueness and incoexistence of the 1\|hom and 1\|per orbit and the inexistence of the 2\|hom and 2\|per orbit are also obtained.