期刊文献+
共找到15,925篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
1
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:3
2
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane Hydrogen generation hydrolysis Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
Research progress on catalysts for organic sulfur hydrolysis: Review of activity and stability
3
作者 Bingning Wang Xianzhe Wang +3 位作者 Song Yang Chao Yang Huiling Fan Ju Shangguan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期203-216,共14页
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o... The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis. 展开更多
关键词 Organic sulfur hydrolysis CATALYSTS ACTIVITY STABILITY
下载PDF
CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose
4
作者 Sen Ma Zheng Li +5 位作者 Jonathan Sperry Xing Tang Yong Sun Lu Lin Jian Liu Xianhai Zeng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1101-1111,共11页
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke... The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification. 展开更多
关键词 Biomass pretreatment CAOSA Cellulose hydrolysis LIGNIN ENZYME
下载PDF
Nano-scale Reinforcements and Properties of Al-Si-Cu Alloy Processed by High-Pressure Torsion
5
作者 DONG Ying WU Siyuan +4 位作者 HE Ziyang LIANG Chen CHENG Feng HE Zuwei QIAN Chenhao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1253-1259,共7页
To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu allo... To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic. 展开更多
关键词 Al-Si-Cu alloy high-pressure torsion nano-scale reinforcements ternary eutectic
下载PDF
Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite
6
作者 Seyed Mohammad Reza Abtahi Saeid Ansari Sadrabadi +4 位作者 Gholam Hosein Rahimi Gaurav Singh Hamid Abyar Daniele Amato Luigi Federico 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1783-1806,共24页
Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necess... Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed. 展开更多
关键词 high-pressure pipeline composite repair ASME PCC-2 ISO 24817
下载PDF
An efficient and mild recycling of waste melamine formaldehyde foams by alkaline hydrolysis
7
作者 Shaodi Wu Ning Zhang +7 位作者 Chizhou Wang Xianglin Hou Jie Zhao Shiyu Jia Jiancheng Zhao Xiaojing Cui Haibo Jin Tiansheng Deng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期919-926,共8页
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi... Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF. 展开更多
关键词 Melamine formaldehyde foam Degradation Alkaline hydrolysis RECYCLING
下载PDF
Utlra-fast hydrolysis performance of MgH_(2) catalyzed by Ti-Zr-Fe-Mn-Cr-V high-entropy alloys
8
作者 Jinting Chen Tingting Xu +7 位作者 Zeyu Zhang Jinghan Zhang Haixiang Huang Bogu Liu Yawei Li Jianguang Yuan Bao Zhang Ying Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期77-86,共10页
Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolys... Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2). 展开更多
关键词 Mg-based materials High-entropy alloys hydrolysis Hydrogen generation Cocktail effect CATALYSIS
下载PDF
In situ formed Mg(BH_(4))_(2) for improving hydrolysis properties of MgH_(2)
9
作者 Yongyang Zhu Mili Liu +6 位作者 liming Zeng Yin Wang Daifeng Wu Rui Li Qing Zhou Renheng Tang Fangming Xiao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1204-1214,共11页
The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O... The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells. 展开更多
关键词 hydrolysis MgH_(2) Mg(BH_(4))_(2) Hydrogen generation B_(2)O_(3) MgCl_(2)
下载PDF
Effects of Dilute Acid-intensified Hydrolysis on Fermentative Biohydrogen Production Capacity of Maize Stalk 被引量:2
10
作者 孙学习 李俊峰 +3 位作者 李涛 曾召刚 任保增 樊耀亭 《Agricultural Science & Technology》 CAS 2010年第8期1-3,共3页
[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl... [Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity. 展开更多
关键词 Maize stalk Dilute acid-intensified hydrolysis Fermentative biohydrogen production
下载PDF
Preparation and Characterization of Nanometer TiO_2 by Hydrolysis Precipitation Method 被引量:1
11
作者 方世杰 徐明霞 +1 位作者 郝俊杰 汪成建 《Transactions of Tianjin University》 EI CAS 2002年第2期79-82,共4页
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu... Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth. 展开更多
关键词 nanometer Tio 2 hydrolysis precipitation method PH crystal phase transformation
下载PDF
Theoretical Studies on Mechanism and Rate Constant of Gas Phase Hydrolysis of Glyoxal Catalyzed by Sulfuric Acid
12
作者 黄明强 蔡顺有 +4 位作者 廖颖敏 赵卫雄 胡长进 王振亚 张为俊 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期335-343,I0001,I0002,共11页
The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional ... The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer. 展开更多
关键词 GLYOXAL hydrolysis Sulfuric acid Acid-catalyzed mechanism
下载PDF
Influence of K + on the Coupling Between ATP Hydrolysis and Proton Transport by the Plasma Membrane H +_ATPase from Soybean Hypocotyls 被引量:1
13
作者 邱全胜 《Acta Botanica Sinica》 CSCD 1999年第9期962-966,共5页
The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by th... The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase. 展开更多
关键词 Soybean hypocotyl Plasma membrane H +_ATPase K + ATP hydrolysis Proton transport COUPLING
下载PDF
STUDY ON HYDROLYSIS RESISTANT POLYCARBONATE POLYURETHANE EPOXY RESIN BLENDS
14
作者 陈同蕙 高悦 +1 位作者 黎汉生 张敏莲 《Transactions of Tianjin University》 EI CAS 1998年第2期55-58,共4页
This paper studies the structure and properties of the polycarbonate polyurethane epoxy resin (PCPU EP) blends being resistant to hydrolysis.The samples were analyzed by an infrared spectrome... This paper studies the structure and properties of the polycarbonate polyurethane epoxy resin (PCPU EP) blends being resistant to hydrolysis.The samples were analyzed by an infrared spectrometer,a differential scanning calorimeter,a scanning electron microscope and a dynamic viscoelastometer.The results show that PCPU EP blends have excellent resistance to hydrolysis and mechanical properties at the ratio of PCPU to EP equal to 10/100 (wt/wt). 展开更多
关键词 POLYCARBONATE POLYURETHANE epoxy resin resistance to hydrolysis
下载PDF
Hydrolysis Mechanism of the NAMI-A-type Antitumor Complex (HL)[trans-RuCl4L(dmso-S)] (L=1-methyl-l,2,4-triazole)
15
作者 陈兰美 陈锦灿 +3 位作者 廖思燕 刘江琴 罗辉 郑康成 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期383-390,I0003,共9页
The hydrolysis process of Ru(III) complex (HL)[trans-RuC14L(dmso-S)] (L=l-methyl-l,2,4- triazole and dmso-S=S-dimethyl sulfoxide) (1), a potential antitumor complex similar to the well-known antitumor agent ... The hydrolysis process of Ru(III) complex (HL)[trans-RuC14L(dmso-S)] (L=l-methyl-l,2,4- triazole and dmso-S=S-dimethyl sulfoxide) (1), a potential antitumor complex similar to the well-known antitumor agent (Him)[trans-RuC14 (dmso-S)(im)] (NAMI-A, im=imidazole), was investigated using density functional theory combined with the conductor-like polarizable continuum model approach. Tile structural characteristics and the detailed energy profiles for the hydrolysis processes of this complex were obtained. For the first hydrolysis step, complex 1 has slightly higher barrier energies than the reported anticancer drug NAMI-A, and the result is in accordance with the experimental evidence indicating larger half-life for complex 1. For the second hydrolysis step, the formation of cis-diaqua species is thermodynamic preferred to that of trans isomers. In addition, on the basis of the analysis of electronic characteristics of species in the hydrolysis process, the trend in nucleophilic attack abilities of hydrolysis products by pertinent biomolecules is revealed and predicted. 展开更多
关键词 NAMI-A-type complex Anticancer activity hydrolysis Density functional theory Conductor-like polarizable continuum model
下载PDF
Preparation and Characterization of Nanometer TiO2 by Hydrolysis Precipitation Method 被引量:1
16
作者 方世杰 徐明霞 +1 位作者 郝俊杰 汪成建 《Transactions of Tianjin University》 EI CAS 2002年第2期79-82,共页
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu... Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth. 展开更多
关键词 nanometer Tio 2 hydrolysis precipitation method PH crystal phase transformation
全文增补中
Effects of low melting point metals(Ga,In,Sn) on hydrolysis properties of aluminum alloys 被引量:3
17
作者 王凡强 王辉虎 +5 位作者 王建 芦佳 罗平 常鹰 马新国 董仕节 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期152-159,共8页
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly... Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity. 展开更多
关键词 aluminum alloy low melting point metal hydrolysis hydrogen generation mechanical ball milling method
下载PDF
Combination eect of pH and acetate on enzymatic cellulose hydrolysis 被引量:8
18
作者 ROMSAIYUD Angsana SONGKASIRI Warinthorn +1 位作者 NOPHARATANA Annop CHAIPRASERT Pawinee 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第7期965-970,共6页
The productivity and efficiency of cellulase are significant in cellulose hydrolysis. With the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system is reduced. Therefore, this stud... The productivity and efficiency of cellulase are significant in cellulose hydrolysis. With the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system is reduced. Therefore, this study will find out how the pH and the amount of acetate influence the enzymatic hydrolysis of cellulose. The effects of pH and acetate on cellulase produced from Bacillus coagulans were studied at various pH 5-8, and acetate concentrations (0-60 mmol/L). A batch kinetic model for enzymatic cellulose hydrolysis was constructed from experimental data and performed. The base hypothesis was as follows: the rates of enzymatic cellulose hydrolysis rely on pH and acetate concentration. The results showed that the suitable pH range for cellulase production and cellulose hydrolysis (represents efficiency of cellulase) was 2.6-7.5, and 5.3-8.3, respectively. Moreover, acetate in the culture medium had an effect on cellulase production (KI = 49.50 mmol/L, n = 1.7) less than cellulose hydrolysis (/('i = 37.85 mmol/L, n = 2.0). The results indicated that both the pH of suspension and acidogenic products influence the enzymatic hydrolysis of cellulose in an anaerobic environment. To enhance the cellulose hydrolysis rate, the accumulated acetate concentration should be lower than 25 mmol/L, and pH should be maintained at 7. 展开更多
关键词 ACETATE Bacillus coagulans CELLULASE CELLULOSE hydrolysis kinetics
下载PDF
Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10 被引量:13
19
作者 FENG Leiyu, YAN Yuanyuan, CHEN Yinguang State key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期589-594,共6页
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH ... The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10. 展开更多
关键词 waste activated sludge hydrolysis short-chain fatty acids KINETICS alkaline pH
下载PDF
Gas chromatography-mass spectrometry method for determination ofβ-propiolactone in human inactivated rabies vaccine and its hydrolysis analysis 被引量:6
20
作者 Shuo Lei Xun Gao +2 位作者 Yang Sun Xiangyong Yu Longshan Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第6期373-377,共5页
A simple method was established for the determination of β-propiolactone(BPL) in human inactivated rabies vaccine by gas chromatography-mass spectrometry(GC-MS). The determination was performed on an Agilent HP-INNOW... A simple method was established for the determination of β-propiolactone(BPL) in human inactivated rabies vaccine by gas chromatography-mass spectrometry(GC-MS). The determination was performed on an Agilent HP-INNOWAX(30 m ? 0.32 mm i.d., 0.25 mm) capillary column at the temperature of 80 °C.Electrospray ionization(ESI) was used by selective ion detection at m/z 42. The temperature for ESI source and inlet was set at 230 °C and 200 °C, respectively. Helium was used as the carrier gas at a flow rate of 25.1 m L/min. The total run time was 8 min. Acetonitrile and other components in the sample did not interfere with the determination of BPL. The results showed good linearity of BPL in the range of0.50–10.01 μg/mL, with the limit of detection and the limit of quantification of 0.015 μg/mL and0.050 μg/mL, respectively. Satisfactory precision was achieved for the current developed method. The method was applied to detect 6 batches of vaccine samples, and the results indicated that the target analyte BPL was present in three batches of unpurified samples, but was not detected in the purified samples, indicating the test samples were qualified. The established method was proved to be simple,versatile and sensitive, which can meet the requirements of quality control of BPL in human inactivated rabies vaccine. 展开更多
关键词 β-propiolactone INACTIVATED HUMAN RABIES VACCINE GC-MS hydrolysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部