The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant imp...The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.展开更多
A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The rati...A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The ratio of the marine species Thalassionema nitzschioides to the intertidal-coastal species complex Cyclotella striata/stylorum serves as a novel proxy for assessing the strength of marine influence.Chronological data,corrected for the local residence time effect,facilitated the construction of a diatom proxy-based marine influence curve for the study area.This curve delineates the dynamics of marine influence and their correlations with paleo-climate fluctuations and the East Asian monsoon variability,as well as their role in chenier formation.Results include:(1)eight periods of intensified marine influence have been documented since 7000 a BP in the study area.The peak of each period,as determined by the diatom proxy,corresponds closely to the warm climatic phases and stronger East Asian summer monsoons,suggesting that the peaks marine influence indicate typically the periods of climatic warmth and monsoon activity intensification in the region;(2)a strong correlation exists between the development of cheniers and marine influence,and chenier formation began with the increasing marine influence and terminated at the end of warm periods as marine influence weakens.The climatic changes in the coastal area,as indicated by the diatom proxy,hold significant potential for future related research endeavors.展开更多
High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b...High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.展开更多
This research initiative, conducted along the coastal zones of Al Hamama and Susah in northeastern Libya, aimed to enhance our understanding of Holocene benthic foraminifera assemblages and the paleoenvironmental para...This research initiative, conducted along the coastal zones of Al Hamama and Susah in northeastern Libya, aimed to enhance our understanding of Holocene benthic foraminifera assemblages and the paleoenvironmental parameters in the region. We meticulously gathered five sediment samples to analyze the composition of foraminifera populations within the unconsolidated sedimentary deposits adjacent to these locations. We successfully identified nine distinct benthic foraminifera species, including Amphistegina lobifera, Eliphidium crispum, Sigmoilinita tenuis, Sorites orbiculus, Stomatorbina concentrica, Peneroplis planatus, Pseudotriloculina rotunda, Pyrgoella sphaera, and Triloculina schreberiana. Notably, Eliphidium crispum and Amphistegina lobifera emerged as the most prevalent species. These foraminifera species exhibited distinct ecological preferences, shedding light on paleoenvironmental conditions and climatic fluctuations during the Quaternary Period in the Susah and Al Hamama coastal regions. The presence of Orbulina universa, a planktonic foraminifera species, further enriched our understanding of the paleoenvironment by providing insights into specific water depths and temperature ranges. This research significantly contributes to paleoceanography and environmental reconstruction, highlighting the invaluable use of foraminifera as proxies for exploring past environmental changes. Additionally, the study investigated the impacts of anthropogenic influences on benthic ecosystems in the Al Hamama and Susah coastal areas. These influences included reworked foraminifera specimens and the effects of karst formations, acid rain, and eutrophication. Notably, human-induced factors have visibly affected biogenic fauna and ecosystem dynamics in the study area. Consequently, this research provides valuable insights into paleoenvironmental conditions and ecological dynamics within the Susah and Al Hamama coastal regions, emphasizing the crucial role of foraminifera in reconstructing historical environmental fluctuations.展开更多
Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of contin...Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of continuous record.Here,we present a long-term,continuousδ18Obub record from the Tanggula glacier in the central Tibetan Plateau(TP).Based on comparisons of its variation with regional climate and glacier changes,we found that there was a good correlation between the variation of theδ18Obub in this alpine ice core and the accumulation and melting of this glacier.The more developed the firn layer on glacier surface,the more positive theδ18Obub.Conversely,the more intense the glacier melting,the more negative theδ18Obub.Combined with the chronology of ice core enclosed gases,the glacier variations since the late Holocene in the central TP were reconstructed.The result showed that there were four accumulation and three deficit periods of glaciers in this region.The strongest glacier accumulation period was 1610-300 B.C.,which corresponds to the Neoglaciation.The most significant melting period was the last 100 years,which corresponds to the recent global warming.The Medieval Warm Period was relatively significant in the central TP.However,during the Little Ice Age,there was no significant glacier accumulation in the central TP,and even short deficit events occurred.Comparisons of the late Holocene glacier variation in the central TP with glacier and climate variations in the TP and the Northern Hemisphere showed that it was closely related to the North Atlantic Oscillation.展开更多
A granulometric, mineralogical, morphoscopic and exoscopic study and Rock-Eval analysis carried out on samples taken in the Loango Bay and at Kivesso on the Congolese coast have made it possible to highlight the highl...A granulometric, mineralogical, morphoscopic and exoscopic study and Rock-Eval analysis carried out on samples taken in the Loango Bay and at Kivesso on the Congolese coast have made it possible to highlight the highly erosive character of the well-documented wet phases ca 9000 - 3000 years B.P. and ca 320 B.P. in the sub-region. Supported by carbon-14 dating, total organic carbon analyses highlight two major phases of peat deposit emplacement. The first, ca. 7000 years B.P., corresponds to the beginning of the deposition of the yellow formation in the entire Loango Bay;the second, ca. 320 years B.P., is contemporary with the deposition of peat in the Kivesso sector. The granulometric analysis of the sediments shows that they are essentially sandy-clay and very poor in silt, alternating with beds of silty clay sometimes rich in organic matter. These sands have a predominant mode of 0.200 mm and an average varying between 0.150 and 0.300 mm. They constitute the flood phase of the carrier current. They are associated with a population of mode 0.125 mm sometimes 0.050 mm with an average varying between 0.100 mm and 0.126 mm which corresponds to the settling phase. Morphoscopic examination showed several varieties of quartz that argue for a source of supply close to the depositional sites.展开更多
According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-st...According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-stands can be identified from the distribution of coral reef ages: 7300 - 6000 cal.aBP, 4800 - 4700 cal.aBP, 4300 - 4200 cal.aBP and 3100 - 2900 cal.aBP. The highest sea level occurred around 7300 - 6700 cal.aBP, and biological-morphological zones took their shape during the stage. The later coral reefs developed in ponds, depressions, and developed outwards on both sides of Luhuitou peninsula. The modern coral reefs are developing in out reef flat and reef-front slope. Moreover, the time of high sea levels in the northern South China Sea recorded by coral reefs in the Luhuitou peninsula can link up with that in other parts of South China Sea. That means the high sea levels in the South China Sea during the Holocene, which are relative to the warming climate, have the global background.展开更多
Through the Pearl River Estuary Wan Qing-sha W2 core AMS 14^C dating of sediments, combining with paleomagnetic test, pollen analysis, and comprehensive comparison with other relevant records, the regional framework o...Through the Pearl River Estuary Wan Qing-sha W2 core AMS 14^C dating of sediments, combining with paleomagnetic test, pollen analysis, and comprehensive comparison with other relevant records, the regional framework of Holocene age was established. Using the combined feature grain size and magnetic susceptibility proxies for the environment, climate change information in the area since about 6 000 cal yr BP was obtained. The result showed the area since the middle Holocene had experienced three stages climate changes of warm and dry - cool and wet temperature and humidity South area of China in the late Holocene climate (especially rainfall) had important changes, corresponding to the Northern Hemisphere solar radiation reducing, air temperature decreasing, Asian monsoon weakening, and it had close ties with activities to strengthen El Nino - Southern Oscillation events.展开更多
Coastal dune rocks in China are eolian sands cemented by calcium carbonate under subaerial conditions, widely distributing on the tropical and subtropical coasts of South China. Particular temperature and precipitatio...Coastal dune rocks in China are eolian sands cemented by calcium carbonate under subaerial conditions, widely distributing on the tropical and subtropical coasts of South China. Particular temperature and precipitation as well as local wave and landform conditions are required for the formation of the dune rocks. A correspondence was found between Holocene environmental changes and coastal dune rock development by comparing the features of the sea-level and climate changes in the Holocene period with the ages, scales, and cementation of the dune rocks on the South China coasts. The findings provide well grounded explanation for some problems unresolved in the past researches on the coastal dune rock in South China: (1) There were no dune rocks with ages older than 6000 years in South China because the dune rocks formed before 6000 a BP were covered by the sea water that rose in the later period; (2) the dune rocks with ages of around 3000 a BP were widely found in South China today because the coastal dunes were cumulated on a large scale at that time as a result of temperature falling after the end of Megathermal; (3) Medieval Warm Period was the main period for the eolian dunes to be cemented into the coastal dune rocks in South China; (4) lack of dune rocks of younger than 1000 a BP was accounted for by that the climate conditions in recent one thousand years were not suitable for the cementation.展开更多
Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we a...Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14 C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15–40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene(about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units(DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface(MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a highstand systems tract from middle Holocene(about 7–6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.展开更多
The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East A...The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350-2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter monsoon over China's desert area.展开更多
The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleoso...The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.展开更多
Many yellow silt layers have been identified in the Holocene sediments in the last lake of Lop Nur (playa), Xinjiang, northwestern China. Statistics of drill-hole cores have revealed more than one hundred layers, whic...Many yellow silt layers have been identified in the Holocene sediments in the last lake of Lop Nur (playa), Xinjiang, northwestern China. Statistics of drill-hole cores have revealed more than one hundred layers, which exhibit regularity in time sequence. Study has further verified that these yellow silt layers were deposited through eolian processes. The time-frequency distribution diagram shows an obvious peak occurring at about 8200 a B.P., which is consistent with the dry, windy and cold climate event occurring at 8200 a in other places around the world. Therefore, this event is regarded as a response to the global climate change.展开更多
The goal of this research study is to describe academic issues which have been debated in the field of Chinese geosciences for a century. In 1922, Jonquei S. Lee(Li Siguang) discovered Quaternary glacial relics at Tai...The goal of this research study is to describe academic issues which have been debated in the field of Chinese geosciences for a century. In 1922, Jonquei S. Lee(Li Siguang) discovered Quaternary glacial relics at Taihang Mountainin eastern China. In 1947, he published his research findings in the magazine Mount Lushan in Glacial Age. The research results had established three Ice Ages: Poyang(Gonzi), Dagu(Minde), and Lushan(Lisi). However, at that time, no Wurm glacial relics of the last Ice Age had been found in Lushan Mountain. Since then, the research team represented by Shi Yafeng, who is considered to be "the father of glaciers in China", questioned Jonquei S. Lee’s research results and concluded that "Professor Jonquei S. Lee’s Quaternary glacier research in Lushan Mountain having misread the debris flow". In 2005, the "middle-low mountains" in eastern China were finally defined as follows: "We clearly and unambiguously believe that there were no glacial activities in the middle-low mountainous areas of eastern China(east of 102° to 104°E;below 3,000 and 2,500 m) during the Quaternary Period". Currently, the long-standing academic debate appears to have come to a conclusion. As of 2015, the author and others began to investigate and study the Quaternary glacial relics in Mengshan Mountain(1,156 m above sea level), Shandong Province, one of the "middle-low mountains" of eastern China. The relics have been observed to posses the systematic features of glacial erosion, trough and valley striations, and moraine deposits. The applied dating method shave confirmed that there were not only glacial relics of the last Ice Age(Wurm), but also Holocene glacial relics in the Mengshan Mountain area. Therefore, in order to further establish the corresponding relationship between the glacier, loess, stream sediment series, and MIS in the Mengshan Mountain area, a large number of chronological studies have been carried out regarding the various types of sediments in the area, and 24 dating datahave been obtained using OSL, CRN, and 14 Cmethods.On this basis, the corresponding relationship between the sedimentary sequences and the MIS was established for the first time in eastern China, which in dicates the environmental changes which had occurred in eastern China since 80 ka. These discoveries s and chronological study results confirm the existence of the Last Ice Age, as well as Holocene glacial relics at Mengshan Mountain, there by confirming that Quaternary glaciation had occurred in the middle-low mountain areas of eastern China.展开更多
The fate of the terrestrial sediment supplied by rivers is a critical issue for understanding the patterns of Holocene environmental change on continental shelves. The East China Sea is a typical broad continental she...The fate of the terrestrial sediment supplied by rivers is a critical issue for understanding the patterns of Holocene environmental change on continental shelves. The East China Sea is a typical broad continental shelf with abundant sediment supply from large rivers. Here, a variety of sedimentary records were formed during the Holocene period. The sedimentary systems associated with these records have unique charac- teristics in terms of spatial distribution, material composition, deposition rate and the timing of deposition, which are related to active sediment transport processes induced by tides and waves, shelf circulations and sediment gravity flows. The sedimentary records thus formed are high resolution slices, i.e., each record has a temporal resolution of up to 10^-10-1 a, but only covers a limited part of the Holocene time. In terms of the spatial distribution, these records are scattered over a large area on the shelf. Further studies of these systems are required to understand the underlying process-product relationships. In particular, the mid- Holocene coastal deposits on the Jiangsu coast, the early to middle Holocene sequences of the Hangzhou Bay, as well as the Holocene mud deposits off the Zhejiang-Fujian coasts, should be investigated in terms of the material supply (from both seabed reworking during the sea level rise event and river discharges), transport-accumulation processes, the sediment sequences and the future evolution of the sedimentary systems. Advanced numerical modeling techniques should be developed to meet the needs of these studies.展开更多
Assemblages of benthic foraminifera in a sediment core(C02)near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the...Assemblages of benthic foraminifera in a sediment core(C02)near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the Holocene marine transgression.It appears that during the early Holocene(11.2 10.1 kyr BP),the faunal was dominated by low salinity and shallow water species Cribrononion subincertum,Buccella frigida and Ammonia beccarii,reflecting a near coast depositional environment.A rapid increase of the relative abundance of Ammonia compressiuscula between 10.1 9.3 kyr BP indicates that the sea level rose rapidly during that time period.From 9.3 7.7 kyr BP,the benthic foraminiferal assemblage was dominated by high percentage of A.compressiscula,suggesting that the sea level was relatively stable.An obvious transition of benthic foraminifera,from the A.compressiuscula-dominated assemblage to an Ammonia ketienziensis-dominated assemblage,occurred between 7.7 6.2 kyr BP,possibly corresponding to a second sea level rapid rise period in the Yellow Sea during the Holocene.This transition may correspond to the gradually strengthened Yellow Sea warm current(YSWC)and finally is established the modern-type circulation in the Yellow Sea.It may also mark the formation of the Yellow Sea cold bottom water(YSCBW)during that period.Since then,the benthic foraminiferal assemblage based on core C02 was dominated by typical YSCBW species,A.ketienziensis,Astrononion italicum and Hanzawaia nipponica,at 6.2 4 kyr BP.A non-deposition period occurred since 4 kyr BP,which possibly related to the hydrology changes caused by the East Asia monsoon.The two obvious benthic foraminiferal transitions recorded in core C02 during the early and middle Holocene provide evidence that the Yellow Sea has undergone a two-phase rapid sea level rise during the Holocene marine transgression.展开更多
Mangroves,widely distributed along the coasts of tropical China,are influenced by Asia monsoon,relative sea level change and enhanced human activity.To predict the impacts of future climate change on mangrove ecosyste...Mangroves,widely distributed along the coasts of tropical China,are influenced by Asia monsoon,relative sea level change and enhanced human activity.To predict the impacts of future climate change on mangrove ecosystems,it can be understood by reconstructing past mangrove dynamics using proxies preserved in coastal sediments.In this study,we quantitatively partitioned buried organic matter(OM)sources,collected from a vulnerable mangrove swamp in the Qinzhou Bay of northwestern South China Sea,using a ternary end-member mixing model of δ^13C and C:N values.Mangrove-derived OM(MOM)contribution was used as a tracer for mangrove development since 2.34 cal ka BP.This information,together with paleoclimate records(i.e.,speleothem δ^18O values,sea level change,grain size parameters)and human activity,was used to divide mangrove development into three stages during the late Holocene:relative flourish(2.34-1.13 cal ka BP),relative degradation(1.13-0.15 cal ka BP)and further degradation(0.15-0 cal ka BP).Before 1.13 cal ka BP,mangroves flourished with a high MOM contribution((88.9±10.6)%),corresponding to stable and high sea level under a warm and humid climate.After 1.13 cal ka BP,rapid fall in relative sea level coupled with the strengthening of the Asian winter monsoon,resulted in mangrove degradation and MOM reduction((62.4±18.9)%).Compared with air temperature and precipitation,the relative sea level fall was the main controlling factor in mangrove development before entering the Anthropocene(the time of the Industrial Revolution).After^150 cal a BP,reclamation of mangrove swamps to shrimp ponds is the main factor causing mangrove degradation and MOM reduction.展开更多
Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental c...Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeo- flood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedi- mentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern tech- nology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in envi- ronmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.展开更多
The mid—Holocene climate about 6000 years ago was simulated by using the atmospheric general circulation model. The orbital parameters for 6 ka BP (before present) were prescribed and other forcing factors were set i...The mid—Holocene climate about 6000 years ago was simulated by using the atmospheric general circulation model. The orbital parameters for 6 ka BP (before present) were prescribed and other forcing factors were set in the modern conditions. Results show that the large—scale climate change in the African—Asian monsoon areas during the summer—time is strongly compared to the present climate, while the changes in other seasons and regions are generally weak. The results also revealed the change of the low frequency oscillation in the atmosphere. Key words Seasonal climate - Low frequency oscillation - Mid—Holocene This research was jointly supported by the National Natural Science Foundation of China (NSFC) key project “ Variation of Paleo—environment over East Asia and Its Dynamic Relation with the Global Change” under contract 49894170 and the NSFC project “ Coupling of the AGCM with an Biome Model and the Simulation on the Mid-Holocene Climate” under contract 49975018.展开更多
We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruct...We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.展开更多
基金the National Natural Science Foundation of China(42071011)the 2023 Annual Postgraduate Research and Innovation Foundation of Fujian Normal University,China.
文摘The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.
基金Supported by the Youth Fund of National Natural Science Foundation of China(No.41806109)the project of China Geological Survey(Nos.DD20230091,DD20211301)。
文摘A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The ratio of the marine species Thalassionema nitzschioides to the intertidal-coastal species complex Cyclotella striata/stylorum serves as a novel proxy for assessing the strength of marine influence.Chronological data,corrected for the local residence time effect,facilitated the construction of a diatom proxy-based marine influence curve for the study area.This curve delineates the dynamics of marine influence and their correlations with paleo-climate fluctuations and the East Asian monsoon variability,as well as their role in chenier formation.Results include:(1)eight periods of intensified marine influence have been documented since 7000 a BP in the study area.The peak of each period,as determined by the diatom proxy,corresponds closely to the warm climatic phases and stronger East Asian summer monsoons,suggesting that the peaks marine influence indicate typically the periods of climatic warmth and monsoon activity intensification in the region;(2)a strong correlation exists between the development of cheniers and marine influence,and chenier formation began with the increasing marine influence and terminated at the end of warm periods as marine influence weakens.The climatic changes in the coastal area,as indicated by the diatom proxy,hold significant potential for future related research endeavors.
基金The National Natural Science Foundation of China under contract Nos 42366002 and 41702182the National Key R&D Program of China under contract No.2017YFA0603300the Guangxi Scientific Projects under contract No.2018GXNSFAA281293。
文摘High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.
文摘This research initiative, conducted along the coastal zones of Al Hamama and Susah in northeastern Libya, aimed to enhance our understanding of Holocene benthic foraminifera assemblages and the paleoenvironmental parameters in the region. We meticulously gathered five sediment samples to analyze the composition of foraminifera populations within the unconsolidated sedimentary deposits adjacent to these locations. We successfully identified nine distinct benthic foraminifera species, including Amphistegina lobifera, Eliphidium crispum, Sigmoilinita tenuis, Sorites orbiculus, Stomatorbina concentrica, Peneroplis planatus, Pseudotriloculina rotunda, Pyrgoella sphaera, and Triloculina schreberiana. Notably, Eliphidium crispum and Amphistegina lobifera emerged as the most prevalent species. These foraminifera species exhibited distinct ecological preferences, shedding light on paleoenvironmental conditions and climatic fluctuations during the Quaternary Period in the Susah and Al Hamama coastal regions. The presence of Orbulina universa, a planktonic foraminifera species, further enriched our understanding of the paleoenvironment by providing insights into specific water depths and temperature ranges. This research significantly contributes to paleoceanography and environmental reconstruction, highlighting the invaluable use of foraminifera as proxies for exploring past environmental changes. Additionally, the study investigated the impacts of anthropogenic influences on benthic ecosystems in the Al Hamama and Susah coastal areas. These influences included reworked foraminifera specimens and the effects of karst formations, acid rain, and eutrophication. Notably, human-induced factors have visibly affected biogenic fauna and ecosystem dynamics in the study area. Consequently, this research provides valuable insights into paleoenvironmental conditions and ecological dynamics within the Susah and Al Hamama coastal regions, emphasizing the crucial role of foraminifera in reconstructing historical environmental fluctuations.
基金supported by the National Natural Science Foundation of China(Grant No.42271312,41201058)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20070102)+1 种基金the National Key R&D Program of China(Grant No.2018YFB1307504)the Science and Technology Program of Tibet Autonomous Region of China(Grant No.XZ202101ZD0014G).
文摘Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of continuous record.Here,we present a long-term,continuousδ18Obub record from the Tanggula glacier in the central Tibetan Plateau(TP).Based on comparisons of its variation with regional climate and glacier changes,we found that there was a good correlation between the variation of theδ18Obub in this alpine ice core and the accumulation and melting of this glacier.The more developed the firn layer on glacier surface,the more positive theδ18Obub.Conversely,the more intense the glacier melting,the more negative theδ18Obub.Combined with the chronology of ice core enclosed gases,the glacier variations since the late Holocene in the central TP were reconstructed.The result showed that there were four accumulation and three deficit periods of glaciers in this region.The strongest glacier accumulation period was 1610-300 B.C.,which corresponds to the Neoglaciation.The most significant melting period was the last 100 years,which corresponds to the recent global warming.The Medieval Warm Period was relatively significant in the central TP.However,during the Little Ice Age,there was no significant glacier accumulation in the central TP,and even short deficit events occurred.Comparisons of the late Holocene glacier variation in the central TP with glacier and climate variations in the TP and the Northern Hemisphere showed that it was closely related to the North Atlantic Oscillation.
文摘A granulometric, mineralogical, morphoscopic and exoscopic study and Rock-Eval analysis carried out on samples taken in the Loango Bay and at Kivesso on the Congolese coast have made it possible to highlight the highly erosive character of the well-documented wet phases ca 9000 - 3000 years B.P. and ca 320 B.P. in the sub-region. Supported by carbon-14 dating, total organic carbon analyses highlight two major phases of peat deposit emplacement. The first, ca. 7000 years B.P., corresponds to the beginning of the deposition of the yellow formation in the entire Loango Bay;the second, ca. 320 years B.P., is contemporary with the deposition of peat in the Kivesso sector. The granulometric analysis of the sediments shows that they are essentially sandy-clay and very poor in silt, alternating with beds of silty clay sometimes rich in organic matter. These sands have a predominant mode of 0.200 mm and an average varying between 0.150 and 0.300 mm. They constitute the flood phase of the carrier current. They are associated with a population of mode 0.125 mm sometimes 0.050 mm with an average varying between 0.100 mm and 0.126 mm which corresponds to the settling phase. Morphoscopic examination showed several varieties of quartz that argue for a source of supply close to the depositional sites.
基金We gratefully acknowledge the financial supports from the National Natural Science Foundation of China(Grant No.49976015).
文摘According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-stands can be identified from the distribution of coral reef ages: 7300 - 6000 cal.aBP, 4800 - 4700 cal.aBP, 4300 - 4200 cal.aBP and 3100 - 2900 cal.aBP. The highest sea level occurred around 7300 - 6700 cal.aBP, and biological-morphological zones took their shape during the stage. The later coral reefs developed in ponds, depressions, and developed outwards on both sides of Luhuitou peninsula. The modern coral reefs are developing in out reef flat and reef-front slope. Moreover, the time of high sea levels in the northern South China Sea recorded by coral reefs in the Luhuitou peninsula can link up with that in other parts of South China Sea. That means the high sea levels in the South China Sea during the Holocene, which are relative to the warming climate, have the global background.
文摘Through the Pearl River Estuary Wan Qing-sha W2 core AMS 14^C dating of sediments, combining with paleomagnetic test, pollen analysis, and comprehensive comparison with other relevant records, the regional framework of Holocene age was established. Using the combined feature grain size and magnetic susceptibility proxies for the environment, climate change information in the area since about 6 000 cal yr BP was obtained. The result showed the area since the middle Holocene had experienced three stages climate changes of warm and dry - cool and wet temperature and humidity South area of China in the late Holocene climate (especially rainfall) had important changes, corresponding to the Northern Hemisphere solar radiation reducing, air temperature decreasing, Asian monsoon weakening, and it had close ties with activities to strengthen El Nino - Southern Oscillation events.
基金National Natural Science Foundation of China, No.40871020 Guangdong Natural Science Foundation, No.7005836
文摘Coastal dune rocks in China are eolian sands cemented by calcium carbonate under subaerial conditions, widely distributing on the tropical and subtropical coasts of South China. Particular temperature and precipitation as well as local wave and landform conditions are required for the formation of the dune rocks. A correspondence was found between Holocene environmental changes and coastal dune rock development by comparing the features of the sea-level and climate changes in the Holocene period with the ages, scales, and cementation of the dune rocks on the South China coasts. The findings provide well grounded explanation for some problems unresolved in the past researches on the coastal dune rock in South China: (1) There were no dune rocks with ages older than 6000 years in South China because the dune rocks formed before 6000 a BP were covered by the sea water that rose in the later period; (2) the dune rocks with ages of around 3000 a BP were widely found in South China today because the coastal dunes were cumulated on a large scale at that time as a result of temperature falling after the end of Megathermal; (3) Medieval Warm Period was the main period for the eolian dunes to be cemented into the coastal dune rocks in South China; (4) lack of dune rocks of younger than 1000 a BP was accounted for by that the climate conditions in recent one thousand years were not suitable for the cementation.
基金financially supported by the National Natural Science Foundation of China (Nos. 41306063 and 41330964)by the China Geological Survey (Nos. GZH200900501 and GZH201100203)
文摘Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14 C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15–40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene(about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units(DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface(MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a highstand systems tract from middle Holocene(about 7–6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 Knowledge Innovation Project of CAS, No.KZCX2-SW-118
文摘The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350-2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter monsoon over China's desert area.
基金Under the auspices of National Basic Research Program of China (No. 2010CB833405)National Natural Science Foundation of China (No. 40772118, 49971009)
文摘The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.
基金supported by the Orientated Fund Project (DKD95-22)of the former Ministry of Geology and Mineral Resources of Chinathe"305"Project(96-916-08-05)of the Ministry of Science and Technology of China
文摘Many yellow silt layers have been identified in the Holocene sediments in the last lake of Lop Nur (playa), Xinjiang, northwestern China. Statistics of drill-hole cores have revealed more than one hundred layers, which exhibit regularity in time sequence. Study has further verified that these yellow silt layers were deposited through eolian processes. The time-frequency distribution diagram shows an obvious peak occurring at about 8200 a B.P., which is consistent with the dry, windy and cold climate event occurring at 8200 a in other places around the world. Therefore, this event is regarded as a response to the global climate change.
文摘The goal of this research study is to describe academic issues which have been debated in the field of Chinese geosciences for a century. In 1922, Jonquei S. Lee(Li Siguang) discovered Quaternary glacial relics at Taihang Mountainin eastern China. In 1947, he published his research findings in the magazine Mount Lushan in Glacial Age. The research results had established three Ice Ages: Poyang(Gonzi), Dagu(Minde), and Lushan(Lisi). However, at that time, no Wurm glacial relics of the last Ice Age had been found in Lushan Mountain. Since then, the research team represented by Shi Yafeng, who is considered to be "the father of glaciers in China", questioned Jonquei S. Lee’s research results and concluded that "Professor Jonquei S. Lee’s Quaternary glacier research in Lushan Mountain having misread the debris flow". In 2005, the "middle-low mountains" in eastern China were finally defined as follows: "We clearly and unambiguously believe that there were no glacial activities in the middle-low mountainous areas of eastern China(east of 102° to 104°E;below 3,000 and 2,500 m) during the Quaternary Period". Currently, the long-standing academic debate appears to have come to a conclusion. As of 2015, the author and others began to investigate and study the Quaternary glacial relics in Mengshan Mountain(1,156 m above sea level), Shandong Province, one of the "middle-low mountains" of eastern China. The relics have been observed to posses the systematic features of glacial erosion, trough and valley striations, and moraine deposits. The applied dating method shave confirmed that there were not only glacial relics of the last Ice Age(Wurm), but also Holocene glacial relics in the Mengshan Mountain area. Therefore, in order to further establish the corresponding relationship between the glacier, loess, stream sediment series, and MIS in the Mengshan Mountain area, a large number of chronological studies have been carried out regarding the various types of sediments in the area, and 24 dating datahave been obtained using OSL, CRN, and 14 Cmethods.On this basis, the corresponding relationship between the sedimentary sequences and the MIS was established for the first time in eastern China, which in dicates the environmental changes which had occurred in eastern China since 80 ka. These discoveries s and chronological study results confirm the existence of the Last Ice Age, as well as Holocene glacial relics at Mengshan Mountain, there by confirming that Quaternary glaciation had occurred in the middle-low mountain areas of eastern China.
基金a project of the Mega-Science Program supported by the Ministry of Science and Technology of China:"Land-ocean boundary processes and their impacts on the formation of the Yangtze deposition system" under contract No.2013CB956500
文摘The fate of the terrestrial sediment supplied by rivers is a critical issue for understanding the patterns of Holocene environmental change on continental shelves. The East China Sea is a typical broad continental shelf with abundant sediment supply from large rivers. Here, a variety of sedimentary records were formed during the Holocene period. The sedimentary systems associated with these records have unique charac- teristics in terms of spatial distribution, material composition, deposition rate and the timing of deposition, which are related to active sediment transport processes induced by tides and waves, shelf circulations and sediment gravity flows. The sedimentary records thus formed are high resolution slices, i.e., each record has a temporal resolution of up to 10^-10-1 a, but only covers a limited part of the Holocene time. In terms of the spatial distribution, these records are scattered over a large area on the shelf. Further studies of these systems are required to understand the underlying process-product relationships. In particular, the mid- Holocene coastal deposits on the Jiangsu coast, the early to middle Holocene sequences of the Hangzhou Bay, as well as the Holocene mud deposits off the Zhejiang-Fujian coasts, should be investigated in terms of the material supply (from both seabed reworking during the sea level rise event and river discharges), transport-accumulation processes, the sediment sequences and the future evolution of the sedimentary systems. Advanced numerical modeling techniques should be developed to meet the needs of these studies.
基金supported by the National Basic Research Program of China (973 Program 2010CB428901)the National Natural Science Foundation of China (40976031,91228207)
文摘Assemblages of benthic foraminifera in a sediment core(C02)near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the Holocene marine transgression.It appears that during the early Holocene(11.2 10.1 kyr BP),the faunal was dominated by low salinity and shallow water species Cribrononion subincertum,Buccella frigida and Ammonia beccarii,reflecting a near coast depositional environment.A rapid increase of the relative abundance of Ammonia compressiuscula between 10.1 9.3 kyr BP indicates that the sea level rose rapidly during that time period.From 9.3 7.7 kyr BP,the benthic foraminiferal assemblage was dominated by high percentage of A.compressiscula,suggesting that the sea level was relatively stable.An obvious transition of benthic foraminifera,from the A.compressiuscula-dominated assemblage to an Ammonia ketienziensis-dominated assemblage,occurred between 7.7 6.2 kyr BP,possibly corresponding to a second sea level rapid rise period in the Yellow Sea during the Holocene.This transition may correspond to the gradually strengthened Yellow Sea warm current(YSWC)and finally is established the modern-type circulation in the Yellow Sea.It may also mark the formation of the Yellow Sea cold bottom water(YSCBW)during that period.Since then,the benthic foraminiferal assemblage based on core C02 was dominated by typical YSCBW species,A.ketienziensis,Astrononion italicum and Hanzawaia nipponica,at 6.2 4 kyr BP.A non-deposition period occurred since 4 kyr BP,which possibly related to the hydrology changes caused by the East Asia monsoon.The two obvious benthic foraminiferal transitions recorded in core C02 during the early and middle Holocene provide evidence that the Yellow Sea has undergone a two-phase rapid sea level rise during the Holocene marine transgression.
基金The National Natural Science Foundation of China under contract Nos 41576067 and 41576061the Basic Scientific Fund for National Public Research Institutes of China under contract No.2017Q03the National Basic Research Program(973Program)of China under contract No.2010CB951203
文摘Mangroves,widely distributed along the coasts of tropical China,are influenced by Asia monsoon,relative sea level change and enhanced human activity.To predict the impacts of future climate change on mangrove ecosystems,it can be understood by reconstructing past mangrove dynamics using proxies preserved in coastal sediments.In this study,we quantitatively partitioned buried organic matter(OM)sources,collected from a vulnerable mangrove swamp in the Qinzhou Bay of northwestern South China Sea,using a ternary end-member mixing model of δ^13C and C:N values.Mangrove-derived OM(MOM)contribution was used as a tracer for mangrove development since 2.34 cal ka BP.This information,together with paleoclimate records(i.e.,speleothem δ^18O values,sea level change,grain size parameters)and human activity,was used to divide mangrove development into three stages during the late Holocene:relative flourish(2.34-1.13 cal ka BP),relative degradation(1.13-0.15 cal ka BP)and further degradation(0.15-0 cal ka BP).Before 1.13 cal ka BP,mangroves flourished with a high MOM contribution((88.9±10.6)%),corresponding to stable and high sea level under a warm and humid climate.After 1.13 cal ka BP,rapid fall in relative sea level coupled with the strengthening of the Asian winter monsoon,resulted in mangrove degradation and MOM reduction((62.4±18.9)%).Compared with air temperature and precipitation,the relative sea level fall was the main controlling factor in mangrove development before entering the Anthropocene(the time of the Industrial Revolution).After^150 cal a BP,reclamation of mangrove swamps to shrimp ponds is the main factor causing mangrove degradation and MOM reduction.
基金supported by the Nalional Natural Science Foundation of China(Grant Nos.40971115,and 41171163)Scientific Research Foundation of Graduate School of Nanjing University (Grant No.2011CL11)+2 种基金National Key Technology R&D Program of China(Grant No.2010BAK67B02)University Doctoral Foundation of China(Grant No.20090091110036)Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,and the Institute of Earth Enviroment,CAS(Grant No. S KLLQG0817)
文摘Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeo- flood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedi- mentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern tech- nology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in envi- ronmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.
文摘The mid—Holocene climate about 6000 years ago was simulated by using the atmospheric general circulation model. The orbital parameters for 6 ka BP (before present) were prescribed and other forcing factors were set in the modern conditions. Results show that the large—scale climate change in the African—Asian monsoon areas during the summer—time is strongly compared to the present climate, while the changes in other seasons and regions are generally weak. The results also revealed the change of the low frequency oscillation in the atmosphere. Key words Seasonal climate - Low frequency oscillation - Mid—Holocene This research was jointly supported by the National Natural Science Foundation of China (NSFC) key project “ Variation of Paleo—environment over East Asia and Its Dynamic Relation with the Global Change” under contract 49894170 and the NSFC project “ Coupling of the AGCM with an Biome Model and the Simulation on the Mid-Holocene Climate” under contract 49975018.
文摘We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.