Based on the multiple-term horizontal velocity solutions of 230 GPS monitoring sites in Tianshan and its adjacent region, the GPS site velocity fields and crustal horizontal strain fields in the area have been obtaine...Based on the multiple-term horizontal velocity solutions of 230 GPS monitoring sites in Tianshan and its adjacent region, the GPS site velocity fields and crustal horizontal strain fields in the area have been obtained. The results show that the crustal shortening rate of Tianshan, with the longitude (77°±1°)E as the boundary, gradually decreased towards two sides, from the south to the north, indicating that the pushing force of plate becomes weaker along with the fold deformation decreasing of the Tianshan. The direction of principal compressive strain of Tianshan and its adjacent area, nearly NNW, is basically perpendicular to the Tianshan cordillera trend, suggesting the distribution and variation of maximum principal compressive stress in Tianshan and its adjacent region resulted from collision and extrusion of Indian Plate. This paper indicates that the maximum shear strain field mainly con- centrates on two areas, one is Isyk lake of North Tianshan, Kyrgyzstan, and the other is the juncture of Jiashi (South Tianshan) and Pamir arc faults. In the above areas, it can be shown from the epicentral distribution that the strong earthquakes mostly occurs at the high shearing strain accumulation filed or its edge.展开更多
There exists many kinds of calculation models of plane and spherical strain fields, but the results of these models are different. The representative models was analyzed, and got some useful conclusions, in which some...There exists many kinds of calculation models of plane and spherical strain fields, but the results of these models are different. The representative models was analyzed, and got some useful conclusions, in which some models are unbiased, some have deviations that can be corrected, some can only be used to compute strain in a uniform medium and can not be extended, and some can be used in the calculation and analysis of continuous strain field as well. Meanwhile, the correction relationship for spherical difference movement (displacement) computed from strain results was given, and the meaning of the non - differential term in spherical strain model was demonstrated.展开更多
An Ms6.4 earthquake occurred in the Menyuan county of Qinghai Province on Jan 21, 2016. In order to recognize the development of horizontal deformation and distinguish precursory deformation anomalies, we obtained coo...An Ms6.4 earthquake occurred in the Menyuan county of Qinghai Province on Jan 21, 2016. In order to recognize the development of horizontal deformation and distinguish precursory deformation anomalies, we obtained coordinates time series, velocity and strain model around the seismic zones from processing of continuous observations from 2010 and 6 times of surveying Global Positioning System (GPS) data since 2009. The results show that, before the earthquake, the eastern segmentation of the Qilian tectonic zone where the Lenglongling Fault located is in strong crustal shortening and compressional strain state with dilatational rates of -15 to -25 ppb. The Lenglongling Fault has a strike-slip rate of 3.1 mm/a and a far-field differential orthogonal rate of 7 mm/a, while differential rate is only 1.2 mm/a near the fault, which reflects its locking feature with strain energy accumulation and high seismic risks. Dynamic evolution of deformation model shows that preevent dilatational rates around the seismic zones increases from 15 ppb/a to -20 ppb/a with its center moving to the source areas. Time series of N components of G337 station, which is 13.7 km away from the Lenglongling Fault, exhibit a 5 mm/a acceleration anomaly. Time series of base-station QHME (in Menyuan) displays a reverse acceleration from the end of Sep. to Dec., 2016 when it comes to a largest deviation, and the accumulative displacement is more than 4 mm and the value reverse till the earthquake. In our results, coseismic displacement of N, E, U components in QHME site are 3.0 mm, 3.0 mm, -5.4 mm, respectively. If we profile these values onto the Lenglongling Fault, we can achieve a 1.1 mm of strike slip and 4.1 mm updip slip relative to the hanging wall.展开更多
In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focuse...In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 earthquake played an active role in the accumulation of energy in the Sichuan and Yunnan area.Special attention shall be focused on the segment of Xichang-Dongchuan and its neighborhood.展开更多
The gas transport infrastructure is frequently localized in areas subjected to anthropogenic movements and strains.The potential impact of the ground movements on the gas pipeline in the aspect of its damage can be pr...The gas transport infrastructure is frequently localized in areas subjected to anthropogenic movements and strains.The potential impact of the ground movements on the gas pipeline in the aspect of its damage can be properly assessed e.g.by predicting strains,taking into account the causes of terrain movement.On the other hand,the hazard is also related to technological factors like design of the pipeline.The presented method is based on artifcial intelligence methods allowing for evaluation of probability of failure risk in gas supply pipeline sections.The Mamdani fuzzy inference was used in this study.Uncertainty of variables characterizing the resistance of the gas pipeline and predicted continuous deformations of ground surface were accounted for in the model by using triangular-shaped membership functions.Based on the surface deformations and gas pipeline resistance and the inference model one can make prediction when the gas pipeline is hazarded.There were estimated two the most hazarded parts for two pipelines.We proved that the proposed model can contribute to the protection,costoptimization of the designed pipelines and to the repairs of the existing gas pipelines.展开更多
Assuming that the contemporary tectonic activity in China can be treated as continuous, we have simulated 1245 present-day multiple-epoch GPS velocity solutions in the range of Chinese mainland, Mongolia, Myanma, Indi...Assuming that the contemporary tectonic activity in China can be treated as continuous, we have simulated 1245 present-day multiple-epoch GPS velocity solutions in the range of Chinese mainland, Mongolia, Myanma, India, Nepal and Himalayas with a bi-cubic spline interpolation function to inverse the integral horizontal velocity with the fitting accuracy less than 3 mm and obtained the strain rate fields in Chinese mainland. We have also analyzed the characteristics of spatial distribution of horizontal deformation and strain rate fields in Chinese mainland. The result shows that the analysis on the continuous deformation in the large-scale and dense GPS velocity fields can reveal not only the integral tectonic characters of Chinese mainland but also the tectonic characters in local regions. Generally, the magnitude and intensity of horizontal tectonic deformation have a mutation in the South-North Seismic Belt (95°E-102°E), which is stronger in the west than the east and stronger in the south than the north. Large strain rates are found in the areas as Kunlun block, Xianshuihe fault zone and central Yunnan, and the variation of velocity is very rapid. At the same time, the tectonic activity is relatively calm on Altyn Tagh fault zone, and extensive strain is found in the eastern part of central Tianshan.展开更多
Hainan Island,located at the southeast edge of the Eurasian Plate,is affected by the motion of multiple plates,with its northeast edge mainly dilatating and its western margin presently compressing. By analyzing the G...Hainan Island,located at the southeast edge of the Eurasian Plate,is affected by the motion of multiple plates,with its northeast edge mainly dilatating and its western margin presently compressing. By analyzing the GPS rates during 1999- 2007 in Hainan and its adjacent region,we determined horizontal movement rates of 3. 0-21. 1 mm /a at the west of 104°E,evidently affected by the Indian Plate extrusion.Their directions are SE-SN-SW from east to west and are separated by the main fault. The principal strains have the same characteristics. The stations east of 104°E move mainly in the SEE direction. The eastward rates are 2. 1-8. 5 mm /a and northward rates are 0. 4- 2. 7 mm /a. The GPS rates during 2009- 2013 show that stations at the edge of the island move SEE relative to the Eurasian Plate,with rates relative to the mean benchmark,indicating that there are small relative movements between stations,whereas QION station,located in the middle,moves in the NW direction at a greater rate. Vertical differential movement is apparent in the northeast zone of the island. Upwelling of mantle plume material possibly influences the local stress.Three-dimensional GPS rates indicate that,at present,inherited crustal movement is dominant in Hainan.展开更多
Long term ground movements above a tunnel may continue to increase with time after tunnelling in clayey soils as the tunnellinginduced excess pore water pressures dissipate,whilst the changing earth pressure acting on...Long term ground movements above a tunnel may continue to increase with time after tunnelling in clayey soils as the tunnellinginduced excess pore water pressures dissipate,whilst the changing earth pressure acting on the tunnel leads to further tunnel deformation during consolidation.Furthermore the tunnel itself introduces new drainage conditions;that is,depending on the drainage condition of the tunnel lining,the effective stresses around the tunnel change with time,inducing further soil consolidation.A seepage rate from low permeability clayey soil is often very small and the groundwater seeping into the tunnel can evaporate quickly.Although a tunnel may look impermeable because the surface looks dry,it is possible that the tunnel drainage conditions are actually permeable.This paper summarises the investigation of soil-tunnel consolidation interaction,particularly focusing on ground surface movements and tunnel lining deformation in the interest of engineering concerns.Analysis results show that tunnel lining permittivity relative to the permeability of the surrounding ground plays an important role on both long-term ground movements as well as tunnel lining behaviour.The findings published in literature are reviewed step by step starting from a single tunnel,twin tunnels to complex cross passage structures.The mechanisms of tunnelling-induced soil consolidation for these structures are identified and,where applicable,possible engineering methodologies to assess the magnitude of long-term ground surface settlements and tunnel lining loads are proposed.展开更多
基金National Natural Science Foundation of China (40074024) and Natural Science Foundation of Xinjiang Uygur Autonomous Region (200321101).
文摘Based on the multiple-term horizontal velocity solutions of 230 GPS monitoring sites in Tianshan and its adjacent region, the GPS site velocity fields and crustal horizontal strain fields in the area have been obtained. The results show that the crustal shortening rate of Tianshan, with the longitude (77°±1°)E as the boundary, gradually decreased towards two sides, from the south to the north, indicating that the pushing force of plate becomes weaker along with the fold deformation decreasing of the Tianshan. The direction of principal compressive strain of Tianshan and its adjacent area, nearly NNW, is basically perpendicular to the Tianshan cordillera trend, suggesting the distribution and variation of maximum principal compressive stress in Tianshan and its adjacent region resulted from collision and extrusion of Indian Plate. This paper indicates that the maximum shear strain field mainly con- centrates on two areas, one is Isyk lake of North Tianshan, Kyrgyzstan, and the other is the juncture of Jiashi (South Tianshan) and Pamir arc faults. In the above areas, it can be shown from the epicentral distribution that the strong earthquakes mostly occurs at the high shearing strain accumulation filed or its edge.
基金supported by the Natural Eleventh Five Years Scientific and Technolosical Plan( 2006BACOLB03-01-01)
文摘There exists many kinds of calculation models of plane and spherical strain fields, but the results of these models are different. The representative models was analyzed, and got some useful conclusions, in which some models are unbiased, some have deviations that can be corrected, some can only be used to compute strain in a uniform medium and can not be extended, and some can be used in the calculation and analysis of continuous strain field as well. Meanwhile, the correction relationship for spherical difference movement (displacement) computed from strain results was given, and the meaning of the non - differential term in spherical strain model was demonstrated.
基金support by National Natural Science Foundation of China(51479163,41174083)
文摘An Ms6.4 earthquake occurred in the Menyuan county of Qinghai Province on Jan 21, 2016. In order to recognize the development of horizontal deformation and distinguish precursory deformation anomalies, we obtained coordinates time series, velocity and strain model around the seismic zones from processing of continuous observations from 2010 and 6 times of surveying Global Positioning System (GPS) data since 2009. The results show that, before the earthquake, the eastern segmentation of the Qilian tectonic zone where the Lenglongling Fault located is in strong crustal shortening and compressional strain state with dilatational rates of -15 to -25 ppb. The Lenglongling Fault has a strike-slip rate of 3.1 mm/a and a far-field differential orthogonal rate of 7 mm/a, while differential rate is only 1.2 mm/a near the fault, which reflects its locking feature with strain energy accumulation and high seismic risks. Dynamic evolution of deformation model shows that preevent dilatational rates around the seismic zones increases from 15 ppb/a to -20 ppb/a with its center moving to the source areas. Time series of N components of G337 station, which is 13.7 km away from the Lenglongling Fault, exhibit a 5 mm/a acceleration anomaly. Time series of base-station QHME (in Menyuan) displays a reverse acceleration from the end of Sep. to Dec., 2016 when it comes to a largest deviation, and the accumulative displacement is more than 4 mm and the value reverse till the earthquake. In our results, coseismic displacement of N, E, U components in QHME site are 3.0 mm, 3.0 mm, -5.4 mm, respectively. If we profile these values onto the Lenglongling Fault, we can achieve a 1.1 mm of strike slip and 4.1 mm updip slip relative to the hanging wall.
基金This project is sponsored by the National Support of Science and Technology Research"Study on Techniques for Monitoring and Predicting of Strong Earthquake"and the Joint Earthquake Science Foundation of CEA(A07066),China
文摘In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 earthquake played an active role in the accumulation of energy in the Sichuan and Yunnan area.Special attention shall be focused on the segment of Xichang-Dongchuan and its neighborhood.
基金The research reported in this paper has been supported by a grant from the National Science Centre No.2011/01/D/ST10/06958.
文摘The gas transport infrastructure is frequently localized in areas subjected to anthropogenic movements and strains.The potential impact of the ground movements on the gas pipeline in the aspect of its damage can be properly assessed e.g.by predicting strains,taking into account the causes of terrain movement.On the other hand,the hazard is also related to technological factors like design of the pipeline.The presented method is based on artifcial intelligence methods allowing for evaluation of probability of failure risk in gas supply pipeline sections.The Mamdani fuzzy inference was used in this study.Uncertainty of variables characterizing the resistance of the gas pipeline and predicted continuous deformations of ground surface were accounted for in the model by using triangular-shaped membership functions.Based on the surface deformations and gas pipeline resistance and the inference model one can make prediction when the gas pipeline is hazarded.There were estimated two the most hazarded parts for two pipelines.We proved that the proposed model can contribute to the protection,costoptimization of the designed pipelines and to the repairs of the existing gas pipelines.
基金National Natural Science Foundation of China (40274007 and 40304002).
文摘Assuming that the contemporary tectonic activity in China can be treated as continuous, we have simulated 1245 present-day multiple-epoch GPS velocity solutions in the range of Chinese mainland, Mongolia, Myanma, India, Nepal and Himalayas with a bi-cubic spline interpolation function to inverse the integral horizontal velocity with the fitting accuracy less than 3 mm and obtained the strain rate fields in Chinese mainland. We have also analyzed the characteristics of spatial distribution of horizontal deformation and strain rate fields in Chinese mainland. The result shows that the analysis on the continuous deformation in the large-scale and dense GPS velocity fields can reveal not only the integral tectonic characters of Chinese mainland but also the tectonic characters in local regions. Generally, the magnitude and intensity of horizontal tectonic deformation have a mutation in the South-North Seismic Belt (95°E-102°E), which is stronger in the west than the east and stronger in the south than the north. Large strain rates are found in the areas as Kunlun block, Xianshuihe fault zone and central Yunnan, and the variation of velocity is very rapid. At the same time, the tectonic activity is relatively calm on Altyn Tagh fault zone, and extensive strain is found in the eastern part of central Tianshan.
基金supported by the National Science Foundation of China(Grant No.41372345)
文摘Hainan Island,located at the southeast edge of the Eurasian Plate,is affected by the motion of multiple plates,with its northeast edge mainly dilatating and its western margin presently compressing. By analyzing the GPS rates during 1999- 2007 in Hainan and its adjacent region,we determined horizontal movement rates of 3. 0-21. 1 mm /a at the west of 104°E,evidently affected by the Indian Plate extrusion.Their directions are SE-SN-SW from east to west and are separated by the main fault. The principal strains have the same characteristics. The stations east of 104°E move mainly in the SEE direction. The eastward rates are 2. 1-8. 5 mm /a and northward rates are 0. 4- 2. 7 mm /a. The GPS rates during 2009- 2013 show that stations at the edge of the island move SEE relative to the Eurasian Plate,with rates relative to the mean benchmark,indicating that there are small relative movements between stations,whereas QION station,located in the middle,moves in the NW direction at a greater rate. Vertical differential movement is apparent in the northeast zone of the island. Upwelling of mantle plume material possibly influences the local stress.Three-dimensional GPS rates indicate that,at present,inherited crustal movement is dominant in Hainan.
基金This work was supported by National Natural Science Foundation of China(No.51508403)by National Natural Science Foundation of China(No.51608539).
文摘Long term ground movements above a tunnel may continue to increase with time after tunnelling in clayey soils as the tunnellinginduced excess pore water pressures dissipate,whilst the changing earth pressure acting on the tunnel leads to further tunnel deformation during consolidation.Furthermore the tunnel itself introduces new drainage conditions;that is,depending on the drainage condition of the tunnel lining,the effective stresses around the tunnel change with time,inducing further soil consolidation.A seepage rate from low permeability clayey soil is often very small and the groundwater seeping into the tunnel can evaporate quickly.Although a tunnel may look impermeable because the surface looks dry,it is possible that the tunnel drainage conditions are actually permeable.This paper summarises the investigation of soil-tunnel consolidation interaction,particularly focusing on ground surface movements and tunnel lining deformation in the interest of engineering concerns.Analysis results show that tunnel lining permittivity relative to the permeability of the surrounding ground plays an important role on both long-term ground movements as well as tunnel lining behaviour.The findings published in literature are reviewed step by step starting from a single tunnel,twin tunnels to complex cross passage structures.The mechanisms of tunnelling-induced soil consolidation for these structures are identified and,where applicable,possible engineering methodologies to assess the magnitude of long-term ground surface settlements and tunnel lining loads are proposed.